summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRicardo Wurmus <rekado@elephly.net>2019-03-12 22:12:44 +0100
committerRicardo Wurmus <rekado@elephly.net>2019-03-12 22:47:56 +0100
commit8cd3f49d464935d2b266de112aa4b69e7609fae0 (patch)
tree559d230eef4bc33de3c6265ecac9b6eedaf580de
parent1901a53241708f64a4c97df5f12c6412a49e697a (diff)
gnu: Add r-bayesm.
* gnu/packages/cran.scm (r-bayesm): New variable.
-rw-r--r--gnu/packages/cran.scm35
1 files changed, 35 insertions, 0 deletions
diff --git a/gnu/packages/cran.scm b/gnu/packages/cran.scm
index 7a49beee4e..877ddea19b 100644
--- a/gnu/packages/cran.scm
+++ b/gnu/packages/cran.scm
@@ -10941,3 +10941,38 @@ several common set, element and attribute related tasks.")
"This package provides a collection of some tests commonly used for
identifying outliers.")
(license license:gpl2+)))
+
+(define-public r-bayesm
+ (package
+ (name "r-bayesm")
+ (version "3.1-1")
+ (source
+ (origin
+ (method url-fetch)
+ (uri (cran-uri "bayesm" version))
+ (sha256
+ (base32
+ "0y30cza92s6kgvmxjpr6f5g0qbcck7hslqp89ncprarhxiym2m28"))))
+ (build-system r-build-system)
+ (propagated-inputs
+ `(("r-rcpp" ,r-rcpp)
+ ("r-rcpparmadillo" ,r-rcpparmadillo)))
+ (home-page "http://www.perossi.org/home/bsm-1")
+ (synopsis "Bayesian inference for marketing/micro-econometrics")
+ (description
+ "This package covers many important models used in marketing and
+micro-econometrics applications, including Bayes Regression (univariate or
+multivariate dep var), Bayes Seemingly Unrelated Regression (SUR), Binary and
+Ordinal Probit, Multinomial Logit (MNL) and Multinomial Probit (MNP),
+Multivariate Probit, Negative Binomial (Poisson) Regression, Multivariate
+Mixtures of Normals (including clustering), Dirichlet Process Prior Density
+Estimation with normal base, Hierarchical Linear Models with normal prior and
+covariates, Hierarchical Linear Models with a mixture of normals prior and
+covariates, Hierarchical Multinomial Logits with a mixture of normals prior
+and covariates, Hierarchical Multinomial Logits with a Dirichlet Process prior
+and covariates, Hierarchical Negative Binomial Regression Models, Bayesian
+analysis of choice-based conjoint data, Bayesian treatment of linear
+instrumental variables models, Analysis of Multivariate Ordinal survey data
+with scale usage heterogeneity, and Bayesian Analysis of Aggregate Random
+Coefficient Logit Models.")
+ (license license:gpl2+)))