summaryrefslogtreecommitdiff
path: root/gnu/packages
diff options
context:
space:
mode:
authorRicardo Wurmus <rekado@elephly.net>2021-05-04 07:09:50 +0200
committerRicardo Wurmus <rekado@elephly.net>2021-05-04 07:27:43 +0200
commitaa9a94bba9a5705c6a4bfb19268dc616b7f4f7d3 (patch)
treee7aa63d71acf922f52c95348fe75d0cecce98864 /gnu/packages
parentb9fb13b28437a254683273094f189396a6e1421d (diff)
gnu: r-abn: Update to 2.5-0.
* gnu/packages/cran.scm (r-abn): Move from here... * gnu/packages/bioconductor.scm (r-abn): ...to here; update to 2.5-0. [propagated-inputs]: Add r-rgraphviz.
Diffstat (limited to 'gnu/packages')
-rw-r--r--gnu/packages/bioconductor.scm38
-rw-r--r--gnu/packages/cran.scm35
2 files changed, 38 insertions, 35 deletions
diff --git a/gnu/packages/bioconductor.scm b/gnu/packages/bioconductor.scm
index c1454f25e8..da6650b191 100644
--- a/gnu/packages/bioconductor.scm
+++ b/gnu/packages/bioconductor.scm
@@ -10996,6 +10996,44 @@ optionally include the physical locations or genetic map distances of each SNP
on the plot.")
(license license:gpl3)))
+;; This is a CRAN package, but it depends on r-rgraphviz, which is a
+;; Bioconductor package.
+(define-public r-abn
+ (package
+ (name "r-abn")
+ (version "2.5-0")
+ (source
+ (origin
+ (method url-fetch)
+ (uri (cran-uri "abn" version))
+ (sha256
+ (base32
+ "1fqmhw0mhdl6az1gpg0byvx5snhz1pl3fqikhyfjcjrc9xbsq8yw"))))
+ (build-system r-build-system)
+ (inputs
+ `(("gsl" ,gsl)))
+ (propagated-inputs
+ `(("r-lme4" ,r-lme4)
+ ("r-nnet" ,r-nnet)
+ ("r-rcpp" ,r-rcpp)
+ ("r-rcpparmadillo" ,r-rcpparmadillo)
+ ("r-rgraphviz" ,r-rgraphviz)
+ ("r-rjags" ,r-rjags)))
+ (home-page "https://r-bayesian-networks.org/")
+ (synopsis "Modelling multivariate data with additive bayesian networks")
+ (description
+ "Bayesian network analysis is a form of probabilistic graphical models
+which derives from empirical data a directed acyclic graph, DAG, describing
+the dependency structure between random variables. An additive Bayesian
+network model consists of a form of a DAG where each node comprises a
+@dfn{generalized linear model} (GLM). Additive Bayesian network models are
+equivalent to Bayesian multivariate regression using graphical modelling, they
+generalises the usual multivariable regression, GLM, to multiple dependent
+variables. This package provides routines to help determine optimal Bayesian
+network models for a given data set, where these models are used to identify
+statistical dependencies in messy, complex data.")
+ (license license:gpl2+)))
+
(define-public r-pathview
(package
(name "r-pathview")
diff --git a/gnu/packages/cran.scm b/gnu/packages/cran.scm
index 35c35e6716..d5b71d65d3 100644
--- a/gnu/packages/cran.scm
+++ b/gnu/packages/cran.scm
@@ -8037,41 +8037,6 @@ mutual information, and chi-squared statistic of independence. In addition
there are functions for discretizing continuous random variables.")
(license license:gpl3+)))
-(define-public r-abn
- (package
- (name "r-abn")
- (version "2.3-0")
- (source
- (origin
- (method url-fetch)
- (uri (cran-uri "abn" version))
- (sha256
- (base32
- "17vdrqm6qp5aijg00ah2imj3pqr6cl5r43hgg8dijbrbhznarci6"))))
- (build-system r-build-system)
- (inputs
- `(("gsl" ,gsl)))
- (propagated-inputs
- `(("r-lme4" ,r-lme4)
- ("r-nnet" ,r-nnet)
- ("r-rcpp" ,r-rcpp)
- ("r-rcpparmadillo" ,r-rcpparmadillo)
- ("r-rjags" ,r-rjags)))
- (home-page "https://r-bayesian-networks.org/")
- (synopsis "Modelling multivariate data with additive bayesian networks")
- (description
- "Bayesian network analysis is a form of probabilistic graphical models
-which derives from empirical data a directed acyclic graph, DAG, describing
-the dependency structure between random variables. An additive Bayesian
-network model consists of a form of a DAG where each node comprises a
-@dfn{generalized linear model} (GLM). Additive Bayesian network models are
-equivalent to Bayesian multivariate regression using graphical modelling, they
-generalises the usual multivariable regression, GLM, to multiple dependent
-variables. This package provides routines to help determine optimal Bayesian
-network models for a given data set, where these models are used to identify
-statistical dependencies in messy, complex data.")
- (license license:gpl2+)))
-
(define-public r-acd
(package
(name "r-acd")