summaryrefslogtreecommitdiff
path: root/gnu/packages/patches
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/packages/patches')
-rw-r--r--gnu/packages/patches/rust-ring-0.16-missing-files.patch2293
-rw-r--r--gnu/packages/patches/rust-ring-0.16-test-files.patch54
2 files changed, 0 insertions, 2347 deletions
diff --git a/gnu/packages/patches/rust-ring-0.16-missing-files.patch b/gnu/packages/patches/rust-ring-0.16-missing-files.patch
deleted file mode 100644
index fa2f94a801..0000000000
--- a/gnu/packages/patches/rust-ring-0.16-missing-files.patch
+++ /dev/null
@@ -1,2293 +0,0 @@
-These 4 files exist in the git repository for rust-ring, and are from
-the same commit where 0.16.20 is taken from. They were not added to the
-include list in Cargo.toml, so they were not added to the tarball.
-
----
- crypto/curve25519/make_curve25519_tables.py | 222 +++++
- crypto/fipsmodule/aes/asm/vpaes-armv7.pl | 896 ++++++++++++++++++
- crypto/fipsmodule/aes/asm/vpaes-armv8.pl | 837 ++++++++++++++++
- .../fipsmodule/modes/asm/ghash-neon-armv8.pl | 294 ++++++
- 4 files changed, 2249 insertions(+)
- create mode 100755 crypto/curve25519/make_curve25519_tables.py
- create mode 100644 crypto/fipsmodule/aes/asm/vpaes-armv7.pl
- create mode 100755 crypto/fipsmodule/aes/asm/vpaes-armv8.pl
- create mode 100644 crypto/fipsmodule/modes/asm/ghash-neon-armv8.pl
-
-diff --git a/crypto/curve25519/make_curve25519_tables.py b/crypto/curve25519/make_curve25519_tables.py
-new file mode 100755
-index 0000000..50dee2a
---- /dev/null
-+++ b/crypto/curve25519/make_curve25519_tables.py
-@@ -0,0 +1,222 @@
-+#!/usr/bin/env python
-+# coding=utf-8
-+# Copyright (c) 2020, Google Inc.
-+#
-+# Permission to use, copy, modify, and/or distribute this software for any
-+# purpose with or without fee is hereby granted, provided that the above
-+# copyright notice and this permission notice appear in all copies.
-+#
-+# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
-+# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
-+# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
-+# SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
-+# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
-+# OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
-+# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
-+
-+import StringIO
-+import subprocess
-+
-+# Base field Z_p
-+p = 2**255 - 19
-+
-+def modp_inv(x):
-+ return pow(x, p-2, p)
-+
-+# Square root of -1
-+modp_sqrt_m1 = pow(2, (p-1) // 4, p)
-+
-+# Compute corresponding x-coordinate, with low bit corresponding to
-+# sign, or return None on failure
-+def recover_x(y, sign):
-+ if y >= p:
-+ return None
-+ x2 = (y*y-1) * modp_inv(d*y*y+1)
-+ if x2 == 0:
-+ if sign:
-+ return None
-+ else:
-+ return 0
-+
-+ # Compute square root of x2
-+ x = pow(x2, (p+3) // 8, p)
-+ if (x*x - x2) % p != 0:
-+ x = x * modp_sqrt_m1 % p
-+ if (x*x - x2) % p != 0:
-+ return None
-+
-+ if (x & 1) != sign:
-+ x = p - x
-+ return x
-+
-+# Curve constant
-+d = -121665 * modp_inv(121666) % p
-+
-+# Base point
-+g_y = 4 * modp_inv(5) % p
-+g_x = recover_x(g_y, 0)
-+
-+# Points are represented as affine tuples (x, y).
-+
-+def point_add(P, Q):
-+ x1, y1 = P
-+ x2, y2 = Q
-+ x3 = ((x1*y2 + y1*x2) * modp_inv(1 + d*x1*x2*y1*y2)) % p
-+ y3 = ((y1*y2 + x1*x2) * modp_inv(1 - d*x1*x2*y1*y2)) % p
-+ return (x3, y3)
-+
-+# Computes Q = s * P
-+def point_mul(s, P):
-+ Q = (0, 1) # Neutral element
-+ while s > 0:
-+ if s & 1:
-+ Q = point_add(Q, P)
-+ P = point_add(P, P)
-+ s >>= 1
-+ return Q
-+
-+def to_bytes(x):
-+ ret = bytearray(32)
-+ for i in range(len(ret)):
-+ ret[i] = x % 256
-+ x >>= 8
-+ assert x == 0
-+ return ret
-+
-+def to_ge_precomp(P):
-+ # typedef struct {
-+ # fe_loose yplusx;
-+ # fe_loose yminusx;
-+ # fe_loose xy2d;
-+ # } ge_precomp;
-+ x, y = P
-+ return ((y + x) % p, (y - x) % p, (x * y * 2 * d) % p)
-+
-+def to_base_25_5(x):
-+ limbs = (26, 25, 26, 25, 26, 25, 26, 25, 26, 25)
-+ ret = []
-+ for l in limbs:
-+ ret.append(x & ((1<<l) - 1))
-+ x >>= l
-+ assert x == 0
-+ return ret
-+
-+def to_base_51(x):
-+ ret = []
-+ for _ in range(5):
-+ ret.append(x & ((1<<51) - 1))
-+ x >>= 51
-+ assert x == 0
-+ return ret
-+
-+def to_literal(x):
-+ ret = "{{\n#if defined(BORINGSSL_CURVE25519_64BIT)\n"
-+ ret += ", ".join(map(str, to_base_51(x)))
-+ ret += "\n#else\n"
-+ ret += ", ".join(map(str, to_base_25_5(x)))
-+ ret += "\n#endif\n}}"
-+ return ret
-+
-+def main():
-+ d2 = (2 * d) % p
-+
-+ small_precomp = bytearray()
-+ for i in range(1, 16):
-+ s = (i&1) | ((i&2) << (64-1)) | ((i&4) << (128-2)) | ((i&8) << (192-3))
-+ P = point_mul(s, (g_x, g_y))
-+ small_precomp += to_bytes(P[0])
-+ small_precomp += to_bytes(P[1])
-+
-+ large_precomp = []
-+ for i in range(32):
-+ large_precomp.append([])
-+ for j in range(8):
-+ P = point_mul((j + 1) << (i * 8), (g_x, g_y))
-+ large_precomp[-1].append(to_ge_precomp(P))
-+
-+ bi_precomp = []
-+ for i in range(8):
-+ P = point_mul(2*i + 1, (g_x, g_y))
-+ bi_precomp.append(to_ge_precomp(P))
-+
-+
-+ buf = StringIO.StringIO()
-+ buf.write("""/* Copyright (c) 2020, Google Inc.
-+ *
-+ * Permission to use, copy, modify, and/or distribute this software for any
-+ * purpose with or without fee is hereby granted, provided that the above
-+ * copyright notice and this permission notice appear in all copies.
-+ *
-+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
-+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
-+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
-+ * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
-+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
-+ * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
-+ * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
-+
-+// This file is generated from
-+// ./make_curve25519_tables.py > curve25519_tables.h
-+
-+
-+static const fe d = """)
-+ buf.write(to_literal(d))
-+ buf.write(""";
-+
-+static const fe sqrtm1 = """)
-+ buf.write(to_literal(modp_sqrt_m1))
-+ buf.write(""";
-+
-+static const fe d2 = """)
-+ buf.write(to_literal(d2))
-+ buf.write(""";
-+
-+#if defined(OPENSSL_SMALL)
-+
-+// This block of code replaces the standard base-point table with a much smaller
-+// one. The standard table is 30,720 bytes while this one is just 960.
-+//
-+// This table contains 15 pairs of group elements, (x, y), where each field
-+// element is serialised with |fe_tobytes|. If |i| is the index of the group
-+// element then consider i+1 as a four-bit number: (i₀, i₁, i₂, i₃) (where i₀
-+// is the most significant bit). The value of the group element is then:
-+// (i₀×2^192 + i₁×2^128 + i₂×2^64 + i₃)G, where G is the generator.
-+static const uint8_t k25519SmallPrecomp[15 * 2 * 32] = {""")
-+ for i, b in enumerate(small_precomp):
-+ buf.write("0x%02x, " % b)
-+ buf.write("""
-+};
-+
-+#else
-+
-+// k25519Precomp[i][j] = (j+1)*256^i*B
-+static const ge_precomp k25519Precomp[32][8] = {
-+""")
-+ for child in large_precomp:
-+ buf.write("{\n")
-+ for val in child:
-+ buf.write("{\n")
-+ for term in val:
-+ buf.write(to_literal(term) + ",\n")
-+ buf.write("},\n")
-+ buf.write("},\n")
-+ buf.write("""};
-+
-+#endif // OPENSSL_SMALL
-+
-+// Bi[i] = (2*i+1)*B
-+static const ge_precomp Bi[8] = {
-+""")
-+ for val in bi_precomp:
-+ buf.write("{\n")
-+ for term in val:
-+ buf.write(to_literal(term) + ",\n")
-+ buf.write("},\n")
-+ buf.write("""};
-+""")
-+
-+ proc = subprocess.Popen(["clang-format"], stdin=subprocess.PIPE)
-+ proc.communicate(buf.getvalue())
-+
-+if __name__ == "__main__":
-+ main()
-diff --git a/crypto/fipsmodule/aes/asm/vpaes-armv7.pl b/crypto/fipsmodule/aes/asm/vpaes-armv7.pl
-new file mode 100644
-index 0000000..d36a97a
---- /dev/null
-+++ b/crypto/fipsmodule/aes/asm/vpaes-armv7.pl
-@@ -0,0 +1,896 @@
-+#! /usr/bin/env perl
-+# Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
-+#
-+# Licensed under the OpenSSL license (the "License"). You may not use
-+# this file except in compliance with the License. You can obtain a copy
-+# in the file LICENSE in the source distribution or at
-+# https://www.openssl.org/source/license.html
-+
-+
-+######################################################################
-+## Constant-time SSSE3 AES core implementation.
-+## version 0.1
-+##
-+## By Mike Hamburg (Stanford University), 2009
-+## Public domain.
-+##
-+## For details see http://shiftleft.org/papers/vector_aes/ and
-+## http://crypto.stanford.edu/vpaes/.
-+##
-+######################################################################
-+# Adapted from the original x86_64 version and <appro@openssl.org>'s ARMv8
-+# version.
-+#
-+# armv7, aarch64, and x86_64 differ in several ways:
-+#
-+# * x86_64 SSSE3 instructions are two-address (destination operand is also a
-+# source), while NEON is three-address (destination operand is separate from
-+# two sources).
-+#
-+# * aarch64 has 32 SIMD registers available, while x86_64 and armv7 have 16.
-+#
-+# * x86_64 instructions can take memory references, while ARM is a load/store
-+# architecture. This means we sometimes need a spare register.
-+#
-+# * aarch64 and x86_64 have 128-bit byte shuffle instructions (tbl and pshufb),
-+# while armv7 only has a 64-bit byte shuffle (vtbl).
-+#
-+# This means this armv7 version must be a mix of both aarch64 and x86_64
-+# implementations. armv7 and aarch64 have analogous SIMD instructions, so we
-+# base the instructions on aarch64. However, we cannot use aarch64's register
-+# allocation. x86_64's register count matches, but x86_64 is two-address.
-+# vpaes-armv8.pl already accounts for this in the comments, which use
-+# three-address AVX instructions instead of the original SSSE3 ones. We base
-+# register usage on these comments, which are preserved in this file.
-+#
-+# This means we do not use separate input and output registers as in aarch64 and
-+# cannot pin as many constants in the preheat functions. However, the load/store
-+# architecture means we must still deviate from x86_64 in places.
-+#
-+# Next, we account for the byte shuffle instructions. vtbl takes 64-bit source
-+# and destination and 128-bit table. Fortunately, armv7 also allows addressing
-+# upper and lower halves of each 128-bit register. The lower half of q{N} is
-+# d{2*N}. The upper half is d{2*N+1}. Instead of the following non-existent
-+# instruction,
-+#
-+# vtbl.8 q0, q1, q2 @ Index each of q2's 16 bytes into q1. Store in q0.
-+#
-+# we write:
-+#
-+# vtbl.8 d0, q1, d4 @ Index each of d4's 8 bytes into q1. Store in d0.
-+# vtbl.8 d1, q1, d5 @ Index each of d5's 8 bytes into q1. Store in d1.
-+#
-+# For readability, we write d0 and d1 as q0#lo and q0#hi, respectively and
-+# post-process before outputting. (This is adapted from ghash-armv4.pl.) Note,
-+# however, that destination (q0) and table (q1) registers may no longer match.
-+# We adjust the register usage from x86_64 to avoid this. (Unfortunately, the
-+# two-address pshufb always matched these operands, so this is common.)
-+#
-+# This file also runs against the limit of ARMv7's ADR pseudo-instruction. ADR
-+# expands to an ADD or SUB of the pc register to find an address. That immediate
-+# must fit in ARM's encoding scheme: 8 bits of constant and 4 bits of rotation.
-+# This means larger values must be more aligned.
-+#
-+# ARM additionally has two encodings, ARM and Thumb mode. Our assembly files may
-+# use either encoding (do we actually need to support this?). In ARM mode, the
-+# distances get large enough to require 16-byte alignment. Moving constants
-+# closer to their use resolves most of this, but common constants in
-+# _vpaes_consts are used by the whole file. Affected ADR instructions must be
-+# placed at 8 mod 16 (the pc register is 8 ahead). Instructions with this
-+# constraint have been commented.
-+#
-+# For details on ARM's immediate value encoding scheme, see
-+# https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/
-+#
-+# Finally, a summary of armv7 and aarch64 SIMD syntax differences:
-+#
-+# * armv7 prefixes SIMD instructions with 'v', while aarch64 does not.
-+#
-+# * armv7 SIMD registers are named like q0 (and d0 for the half-width ones).
-+# aarch64 names registers like v0, and denotes half-width operations in an
-+# instruction suffix (see below).
-+#
-+# * aarch64 embeds size and lane information in register suffixes. v0.16b is
-+# 16 bytes, v0.8h is eight u16s, v0.4s is four u32s, and v0.2d is two u64s.
-+# armv7 embeds the total size in the register name (see above) and the size of
-+# each element in an instruction suffix, which may look like vmov.i8,
-+# vshr.u8, or vtbl.8, depending on instruction.
-+
-+use strict;
-+
-+my $flavour = shift;
-+my $output;
-+while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
-+
-+$0 =~ m/(.*[\/\\])[^\/\\]+$/;
-+my $dir=$1;
-+my $xlate;
-+( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
-+( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
-+die "can't locate arm-xlate.pl";
-+
-+open OUT,"| \"$^X\" $xlate $flavour $output";
-+*STDOUT=*OUT;
-+
-+my $code = "";
-+
-+$code.=<<___;
-+.syntax unified
-+
-+.arch armv7-a
-+.fpu neon
-+
-+#if defined(__thumb2__)
-+.thumb
-+#else
-+.code 32
-+#endif
-+
-+.text
-+
-+.type _vpaes_consts,%object
-+.align 7 @ totally strategic alignment
-+_vpaes_consts:
-+.Lk_mc_forward: @ mc_forward
-+ .quad 0x0407060500030201, 0x0C0F0E0D080B0A09
-+ .quad 0x080B0A0904070605, 0x000302010C0F0E0D
-+ .quad 0x0C0F0E0D080B0A09, 0x0407060500030201
-+ .quad 0x000302010C0F0E0D, 0x080B0A0904070605
-+.Lk_mc_backward:@ mc_backward
-+ .quad 0x0605040702010003, 0x0E0D0C0F0A09080B
-+ .quad 0x020100030E0D0C0F, 0x0A09080B06050407
-+ .quad 0x0E0D0C0F0A09080B, 0x0605040702010003
-+ .quad 0x0A09080B06050407, 0x020100030E0D0C0F
-+.Lk_sr: @ sr
-+ .quad 0x0706050403020100, 0x0F0E0D0C0B0A0908
-+ .quad 0x030E09040F0A0500, 0x0B06010C07020D08
-+ .quad 0x0F060D040B020900, 0x070E050C030A0108
-+ .quad 0x0B0E0104070A0D00, 0x0306090C0F020508
-+
-+@
-+@ "Hot" constants
-+@
-+.Lk_inv: @ inv, inva
-+ .quad 0x0E05060F0D080180, 0x040703090A0B0C02
-+ .quad 0x01040A060F0B0780, 0x030D0E0C02050809
-+.Lk_ipt: @ input transform (lo, hi)
-+ .quad 0xC2B2E8985A2A7000, 0xCABAE09052227808
-+ .quad 0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81
-+.Lk_sbo: @ sbou, sbot
-+ .quad 0xD0D26D176FBDC700, 0x15AABF7AC502A878
-+ .quad 0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA
-+.Lk_sb1: @ sb1u, sb1t
-+ .quad 0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF
-+ .quad 0xB19BE18FCB503E00, 0xA5DF7A6E142AF544
-+.Lk_sb2: @ sb2u, sb2t
-+ .quad 0x69EB88400AE12900, 0xC2A163C8AB82234A
-+ .quad 0xE27A93C60B712400, 0x5EB7E955BC982FCD
-+
-+.asciz "Vector Permutation AES for ARMv7 NEON, Mike Hamburg (Stanford University)"
-+.size _vpaes_consts,.-_vpaes_consts
-+.align 6
-+___
-+
-+{
-+my ($inp,$out,$key) = map("r$_", (0..2));
-+
-+my ($invlo,$invhi) = map("q$_", (10..11));
-+my ($sb1u,$sb1t,$sb2u,$sb2t) = map("q$_", (12..15));
-+
-+$code.=<<___;
-+@@
-+@@ _aes_preheat
-+@@
-+@@ Fills q9-q15 as specified below.
-+@@
-+.type _vpaes_preheat,%function
-+.align 4
-+_vpaes_preheat:
-+ adr r10, .Lk_inv
-+ vmov.i8 q9, #0x0f @ .Lk_s0F
-+ vld1.64 {q10,q11}, [r10]! @ .Lk_inv
-+ add r10, r10, #64 @ Skip .Lk_ipt, .Lk_sbo
-+ vld1.64 {q12,q13}, [r10]! @ .Lk_sb1
-+ vld1.64 {q14,q15}, [r10] @ .Lk_sb2
-+ bx lr
-+
-+@@
-+@@ _aes_encrypt_core
-+@@
-+@@ AES-encrypt q0.
-+@@
-+@@ Inputs:
-+@@ q0 = input
-+@@ q9-q15 as in _vpaes_preheat
-+@@ [$key] = scheduled keys
-+@@
-+@@ Output in q0
-+@@ Clobbers q1-q5, r8-r11
-+@@ Preserves q6-q8 so you get some local vectors
-+@@
-+@@
-+.type _vpaes_encrypt_core,%function
-+.align 4
-+_vpaes_encrypt_core:
-+ mov r9, $key
-+ ldr r8, [$key,#240] @ pull rounds
-+ adr r11, .Lk_ipt
-+ @ vmovdqa .Lk_ipt(%rip), %xmm2 # iptlo
-+ @ vmovdqa .Lk_ipt+16(%rip), %xmm3 # ipthi
-+ vld1.64 {q2, q3}, [r11]
-+ adr r11, .Lk_mc_forward+16
-+ vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5 # round0 key
-+ vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1
-+ vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0
-+ vtbl.8 q1#lo, {q2}, q1#lo @ vpshufb %xmm1, %xmm2, %xmm1
-+ vtbl.8 q1#hi, {q2}, q1#hi
-+ vtbl.8 q2#lo, {q3}, q0#lo @ vpshufb %xmm0, %xmm3, %xmm2
-+ vtbl.8 q2#hi, {q3}, q0#hi
-+ veor q0, q1, q5 @ vpxor %xmm5, %xmm1, %xmm0
-+ veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0
-+
-+ @ .Lenc_entry ends with a bnz instruction which is normally paired with
-+ @ subs in .Lenc_loop.
-+ tst r8, r8
-+ b .Lenc_entry
-+
-+.align 4
-+.Lenc_loop:
-+ @ middle of middle round
-+ add r10, r11, #0x40
-+ vtbl.8 q4#lo, {$sb1t}, q2#lo @ vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u
-+ vtbl.8 q4#hi, {$sb1t}, q2#hi
-+ vld1.64 {q1}, [r11]! @ vmovdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[]
-+ vtbl.8 q0#lo, {$sb1u}, q3#lo @ vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t
-+ vtbl.8 q0#hi, {$sb1u}, q3#hi
-+ veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
-+ vtbl.8 q5#lo, {$sb2t}, q2#lo @ vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u
-+ vtbl.8 q5#hi, {$sb2t}, q2#hi
-+ veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A
-+ vtbl.8 q2#lo, {$sb2u}, q3#lo @ vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t
-+ vtbl.8 q2#hi, {$sb2u}, q3#hi
-+ vld1.64 {q4}, [r10] @ vmovdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[]
-+ vtbl.8 q3#lo, {q0}, q1#lo @ vpshufb %xmm1, %xmm0, %xmm3 # 0 = B
-+ vtbl.8 q3#hi, {q0}, q1#hi
-+ veor q2, q2, q5 @ vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A
-+ @ Write to q5 instead of q0, so the table and destination registers do
-+ @ not overlap.
-+ vtbl.8 q5#lo, {q0}, q4#lo @ vpshufb %xmm4, %xmm0, %xmm0 # 3 = D
-+ vtbl.8 q5#hi, {q0}, q4#hi
-+ veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B
-+ vtbl.8 q4#lo, {q3}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C
-+ vtbl.8 q4#hi, {q3}, q1#hi
-+ @ Here we restore the original q0/q5 usage.
-+ veor q0, q5, q3 @ vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D
-+ and r11, r11, #~(1<<6) @ and \$0x30, %r11 # ... mod 4
-+ veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D
-+ subs r8, r8, #1 @ nr--
-+
-+.Lenc_entry:
-+ @ top of round
-+ vand q1, q0, q9 @ vpand %xmm0, %xmm9, %xmm1 # 0 = k
-+ vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 # 1 = i
-+ vtbl.8 q5#lo, {$invhi}, q1#lo @ vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k
-+ vtbl.8 q5#hi, {$invhi}, q1#hi
-+ veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j
-+ vtbl.8 q3#lo, {$invlo}, q0#lo @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
-+ vtbl.8 q3#hi, {$invlo}, q0#hi
-+ vtbl.8 q4#lo, {$invlo}, q1#lo @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
-+ vtbl.8 q4#hi, {$invlo}, q1#hi
-+ veor q3, q3, q5 @ vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
-+ veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
-+ vtbl.8 q2#lo, {$invlo}, q3#lo @ vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak
-+ vtbl.8 q2#hi, {$invlo}, q3#hi
-+ vtbl.8 q3#lo, {$invlo}, q4#lo @ vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak
-+ vtbl.8 q3#hi, {$invlo}, q4#hi
-+ veor q2, q2, q1 @ vpxor %xmm1, %xmm2, %xmm2 # 2 = io
-+ veor q3, q3, q0 @ vpxor %xmm0, %xmm3, %xmm3 # 3 = jo
-+ vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5
-+ bne .Lenc_loop
-+
-+ @ middle of last round
-+ add r10, r11, #0x80
-+
-+ adr r11, .Lk_sbo
-+ @ Read to q1 instead of q4, so the vtbl.8 instruction below does not
-+ @ overlap table and destination registers.
-+ vld1.64 {q1}, [r11]! @ vmovdqa -0x60(%r10), %xmm4 # 3 : sbou
-+ vld1.64 {q0}, [r11] @ vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16
-+ vtbl.8 q4#lo, {q1}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou
-+ vtbl.8 q4#hi, {q1}, q2#hi
-+ vld1.64 {q1}, [r10] @ vmovdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[]
-+ @ Write to q2 instead of q0 below, to avoid overlapping table and
-+ @ destination registers.
-+ vtbl.8 q2#lo, {q0}, q3#lo @ vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t
-+ vtbl.8 q2#hi, {q0}, q3#hi
-+ veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
-+ veor q2, q2, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A
-+ @ Here we restore the original q0/q2 usage.
-+ vtbl.8 q0#lo, {q2}, q1#lo @ vpshufb %xmm1, %xmm0, %xmm0
-+ vtbl.8 q0#hi, {q2}, q1#hi
-+ bx lr
-+.size _vpaes_encrypt_core,.-_vpaes_encrypt_core
-+
-+.globl GFp_vpaes_encrypt
-+.type GFp_vpaes_encrypt,%function
-+.align 4
-+GFp_vpaes_encrypt:
-+ @ _vpaes_encrypt_core uses r8-r11. Round up to r7-r11 to maintain stack
-+ @ alignment.
-+ stmdb sp!, {r7-r11,lr}
-+ @ _vpaes_encrypt_core uses q4-q5 (d8-d11), which are callee-saved.
-+ vstmdb sp!, {d8-d11}
-+
-+ vld1.64 {q0}, [$inp]
-+ bl _vpaes_preheat
-+ bl _vpaes_encrypt_core
-+ vst1.64 {q0}, [$out]
-+
-+ vldmia sp!, {d8-d11}
-+ ldmia sp!, {r7-r11, pc} @ return
-+.size GFp_vpaes_encrypt,.-GFp_vpaes_encrypt
-+___
-+}
-+{
-+my ($inp,$bits,$out,$dir)=("r0","r1","r2","r3");
-+my ($rcon,$s0F,$invlo,$invhi,$s63) = map("q$_",(8..12));
-+
-+$code.=<<___;
-+@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
-+@@ @@
-+@@ AES key schedule @@
-+@@ @@
-+@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
-+
-+@ This function diverges from both x86_64 and armv7 in which constants are
-+@ pinned. x86_64 has a common preheat function for all operations. aarch64
-+@ separates them because it has enough registers to pin nearly all constants.
-+@ armv7 does not have enough registers, but needing explicit loads and stores
-+@ also complicates using x86_64's register allocation directly.
-+@
-+@ We pin some constants for convenience and leave q14 and q15 free to load
-+@ others on demand.
-+
-+@
-+@ Key schedule constants
-+@
-+.type _vpaes_key_consts,%object
-+.align 4
-+_vpaes_key_consts:
-+.Lk_rcon: @ rcon
-+ .quad 0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81
-+
-+.Lk_opt: @ output transform
-+ .quad 0xFF9F4929D6B66000, 0xF7974121DEBE6808
-+ .quad 0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0
-+.Lk_deskew: @ deskew tables: inverts the sbox's "skew"
-+ .quad 0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A
-+ .quad 0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77
-+.size _vpaes_key_consts,.-_vpaes_key_consts
-+
-+.type _vpaes_key_preheat,%function
-+.align 4
-+_vpaes_key_preheat:
-+ adr r11, .Lk_rcon
-+ vmov.i8 $s63, #0x5b @ .Lk_s63
-+ adr r10, .Lk_inv @ Must be aligned to 8 mod 16.
-+ vmov.i8 $s0F, #0x0f @ .Lk_s0F
-+ vld1.64 {$invlo,$invhi}, [r10] @ .Lk_inv
-+ vld1.64 {$rcon}, [r11] @ .Lk_rcon
-+ bx lr
-+.size _vpaes_key_preheat,.-_vpaes_key_preheat
-+
-+.type _vpaes_schedule_core,%function
-+.align 4
-+_vpaes_schedule_core:
-+ @ We only need to save lr, but ARM requires an 8-byte stack alignment,
-+ @ so save an extra register.
-+ stmdb sp!, {r3,lr}
-+
-+ bl _vpaes_key_preheat @ load the tables
-+
-+ adr r11, .Lk_ipt @ Must be aligned to 8 mod 16.
-+ vld1.64 {q0}, [$inp]! @ vmovdqu (%rdi), %xmm0 # load key (unaligned)
-+
-+ @ input transform
-+ @ Use q4 here rather than q3 so .Lschedule_am_decrypting does not
-+ @ overlap table and destination.
-+ vmov q4, q0 @ vmovdqa %xmm0, %xmm3
-+ bl _vpaes_schedule_transform
-+ adr r10, .Lk_sr @ Must be aligned to 8 mod 16.
-+ vmov q7, q0 @ vmovdqa %xmm0, %xmm7
-+
-+ add r8, r8, r10
-+
-+ @ encrypting, output zeroth round key after transform
-+ vst1.64 {q0}, [$out] @ vmovdqu %xmm0, (%rdx)
-+
-+ @ *ring*: Decryption removed.
-+
-+.Lschedule_go:
-+ cmp $bits, #192 @ cmp \$192, %esi
-+ bhi .Lschedule_256
-+ @ 128: fall though
-+
-+@@
-+@@ .schedule_128
-+@@
-+@@ 128-bit specific part of key schedule.
-+@@
-+@@ This schedule is really simple, because all its parts
-+@@ are accomplished by the subroutines.
-+@@
-+.Lschedule_128:
-+ mov $inp, #10 @ mov \$10, %esi
-+
-+.Loop_schedule_128:
-+ bl _vpaes_schedule_round
-+ subs $inp, $inp, #1 @ dec %esi
-+ beq .Lschedule_mangle_last
-+ bl _vpaes_schedule_mangle @ write output
-+ b .Loop_schedule_128
-+
-+@@
-+@@ .aes_schedule_256
-+@@
-+@@ 256-bit specific part of key schedule.
-+@@
-+@@ The structure here is very similar to the 128-bit
-+@@ schedule, but with an additional "low side" in
-+@@ q6. The low side's rounds are the same as the
-+@@ high side's, except no rcon and no rotation.
-+@@
-+.align 4
-+.Lschedule_256:
-+ vld1.64 {q0}, [$inp] @ vmovdqu 16(%rdi),%xmm0 # load key part 2 (unaligned)
-+ bl _vpaes_schedule_transform @ input transform
-+ mov $inp, #7 @ mov \$7, %esi
-+
-+.Loop_schedule_256:
-+ bl _vpaes_schedule_mangle @ output low result
-+ vmov q6, q0 @ vmovdqa %xmm0, %xmm6 # save cur_lo in xmm6
-+
-+ @ high round
-+ bl _vpaes_schedule_round
-+ subs $inp, $inp, #1 @ dec %esi
-+ beq .Lschedule_mangle_last
-+ bl _vpaes_schedule_mangle
-+
-+ @ low round. swap xmm7 and xmm6
-+ vdup.32 q0, q0#hi[1] @ vpshufd \$0xFF, %xmm0, %xmm0
-+ vmov.i8 q4, #0
-+ vmov q5, q7 @ vmovdqa %xmm7, %xmm5
-+ vmov q7, q6 @ vmovdqa %xmm6, %xmm7
-+ bl _vpaes_schedule_low_round
-+ vmov q7, q5 @ vmovdqa %xmm5, %xmm7
-+
-+ b .Loop_schedule_256
-+
-+@@
-+@@ .aes_schedule_mangle_last
-+@@
-+@@ Mangler for last round of key schedule
-+@@ Mangles q0
-+@@ when encrypting, outputs out(q0) ^ 63
-+@@ when decrypting, outputs unskew(q0)
-+@@
-+@@ Always called right before return... jumps to cleanup and exits
-+@@
-+.align 4
-+.Lschedule_mangle_last:
-+ @ schedule last round key from xmm0
-+ adr r11, .Lk_deskew @ lea .Lk_deskew(%rip),%r11 # prepare to deskew
-+
-+ @ encrypting
-+ vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10),%xmm1
-+ adr r11, .Lk_opt @ lea .Lk_opt(%rip), %r11 # prepare to output transform
-+ add $out, $out, #32 @ add \$32, %rdx
-+ vmov q2, q0
-+ vtbl.8 q0#lo, {q2}, q1#lo @ vpshufb %xmm1, %xmm0, %xmm0 # output permute
-+ vtbl.8 q0#hi, {q2}, q1#hi
-+
-+.Lschedule_mangle_last_dec:
-+ sub $out, $out, #16 @ add \$-16, %rdx
-+ veor q0, q0, $s63 @ vpxor .Lk_s63(%rip), %xmm0, %xmm0
-+ bl _vpaes_schedule_transform @ output transform
-+ vst1.64 {q0}, [$out] @ vmovdqu %xmm0, (%rdx) # save last key
-+
-+ @ cleanup
-+ veor q0, q0, q0 @ vpxor %xmm0, %xmm0, %xmm0
-+ veor q1, q1, q1 @ vpxor %xmm1, %xmm1, %xmm1
-+ veor q2, q2, q2 @ vpxor %xmm2, %xmm2, %xmm2
-+ veor q3, q3, q3 @ vpxor %xmm3, %xmm3, %xmm3
-+ veor q4, q4, q4 @ vpxor %xmm4, %xmm4, %xmm4
-+ veor q5, q5, q5 @ vpxor %xmm5, %xmm5, %xmm5
-+ veor q6, q6, q6 @ vpxor %xmm6, %xmm6, %xmm6
-+ veor q7, q7, q7 @ vpxor %xmm7, %xmm7, %xmm7
-+ ldmia sp!, {r3,pc} @ return
-+.size _vpaes_schedule_core,.-_vpaes_schedule_core
-+
-+@@
-+@@ .aes_schedule_round
-+@@
-+@@ Runs one main round of the key schedule on q0, q7
-+@@
-+@@ Specifically, runs subbytes on the high dword of q0
-+@@ then rotates it by one byte and xors into the low dword of
-+@@ q7.
-+@@
-+@@ Adds rcon from low byte of q8, then rotates q8 for
-+@@ next rcon.
-+@@
-+@@ Smears the dwords of q7 by xoring the low into the
-+@@ second low, result into third, result into highest.
-+@@
-+@@ Returns results in q7 = q0.
-+@@ Clobbers q1-q4, r11.
-+@@
-+.type _vpaes_schedule_round,%function
-+.align 4
-+_vpaes_schedule_round:
-+ @ extract rcon from xmm8
-+ vmov.i8 q4, #0 @ vpxor %xmm4, %xmm4, %xmm4
-+ vext.8 q1, $rcon, q4, #15 @ vpalignr \$15, %xmm8, %xmm4, %xmm1
-+ vext.8 $rcon, $rcon, $rcon, #15 @ vpalignr \$15, %xmm8, %xmm8, %xmm8
-+ veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7
-+
-+ @ rotate
-+ vdup.32 q0, q0#hi[1] @ vpshufd \$0xFF, %xmm0, %xmm0
-+ vext.8 q0, q0, q0, #1 @ vpalignr \$1, %xmm0, %xmm0, %xmm0
-+
-+ @ fall through...
-+
-+ @ low round: same as high round, but no rotation and no rcon.
-+_vpaes_schedule_low_round:
-+ @ The x86_64 version pins .Lk_sb1 in %xmm13 and .Lk_sb1+16 in %xmm12.
-+ @ We pin other values in _vpaes_key_preheat, so load them now.
-+ adr r11, .Lk_sb1
-+ vld1.64 {q14,q15}, [r11]
-+
-+ @ smear xmm7
-+ vext.8 q1, q4, q7, #12 @ vpslldq \$4, %xmm7, %xmm1
-+ veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7
-+ vext.8 q4, q4, q7, #8 @ vpslldq \$8, %xmm7, %xmm4
-+
-+ @ subbytes
-+ vand q1, q0, $s0F @ vpand %xmm9, %xmm0, %xmm1 # 0 = k
-+ vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 # 1 = i
-+ veor q7, q7, q4 @ vpxor %xmm4, %xmm7, %xmm7
-+ vtbl.8 q2#lo, {$invhi}, q1#lo @ vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k
-+ vtbl.8 q2#hi, {$invhi}, q1#hi
-+ veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j
-+ vtbl.8 q3#lo, {$invlo}, q0#lo @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
-+ vtbl.8 q3#hi, {$invlo}, q0#hi
-+ veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
-+ vtbl.8 q4#lo, {$invlo}, q1#lo @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
-+ vtbl.8 q4#hi, {$invlo}, q1#hi
-+ veor q7, q7, $s63 @ vpxor .Lk_s63(%rip), %xmm7, %xmm7
-+ vtbl.8 q3#lo, {$invlo}, q3#lo @ vpshufb %xmm3, %xmm10, %xmm3 # 2 = 1/iak
-+ vtbl.8 q3#hi, {$invlo}, q3#hi
-+ veor q4, q4, q2 @ vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
-+ vtbl.8 q2#lo, {$invlo}, q4#lo @ vpshufb %xmm4, %xmm10, %xmm2 # 3 = 1/jak
-+ vtbl.8 q2#hi, {$invlo}, q4#hi
-+ veor q3, q3, q1 @ vpxor %xmm1, %xmm3, %xmm3 # 2 = io
-+ veor q2, q2, q0 @ vpxor %xmm0, %xmm2, %xmm2 # 3 = jo
-+ vtbl.8 q4#lo, {q15}, q3#lo @ vpshufb %xmm3, %xmm13, %xmm4 # 4 = sbou
-+ vtbl.8 q4#hi, {q15}, q3#hi
-+ vtbl.8 q1#lo, {q14}, q2#lo @ vpshufb %xmm2, %xmm12, %xmm1 # 0 = sb1t
-+ vtbl.8 q1#hi, {q14}, q2#hi
-+ veor q1, q1, q4 @ vpxor %xmm4, %xmm1, %xmm1 # 0 = sbox output
-+
-+ @ add in smeared stuff
-+ veor q0, q1, q7 @ vpxor %xmm7, %xmm1, %xmm0
-+ veor q7, q1, q7 @ vmovdqa %xmm0, %xmm7
-+ bx lr
-+.size _vpaes_schedule_round,.-_vpaes_schedule_round
-+
-+@@
-+@@ .aes_schedule_transform
-+@@
-+@@ Linear-transform q0 according to tables at [r11]
-+@@
-+@@ Requires that q9 = 0x0F0F... as in preheat
-+@@ Output in q0
-+@@ Clobbers q1, q2, q14, q15
-+@@
-+.type _vpaes_schedule_transform,%function
-+.align 4
-+_vpaes_schedule_transform:
-+ vld1.64 {q14,q15}, [r11] @ vmovdqa (%r11), %xmm2 # lo
-+ @ vmovdqa 16(%r11), %xmm1 # hi
-+ vand q1, q0, $s0F @ vpand %xmm9, %xmm0, %xmm1
-+ vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0
-+ vtbl.8 q2#lo, {q14}, q1#lo @ vpshufb %xmm1, %xmm2, %xmm2
-+ vtbl.8 q2#hi, {q14}, q1#hi
-+ vtbl.8 q0#lo, {q15}, q0#lo @ vpshufb %xmm0, %xmm1, %xmm0
-+ vtbl.8 q0#hi, {q15}, q0#hi
-+ veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0
-+ bx lr
-+.size _vpaes_schedule_transform,.-_vpaes_schedule_transform
-+
-+@@
-+@@ .aes_schedule_mangle
-+@@
-+@@ Mangles q0 from (basis-transformed) standard version
-+@@ to our version.
-+@@
-+@@ On encrypt,
-+@@ xor with 0x63
-+@@ multiply by circulant 0,1,1,1
-+@@ apply shiftrows transform
-+@@
-+@@ On decrypt,
-+@@ xor with 0x63
-+@@ multiply by "inverse mixcolumns" circulant E,B,D,9
-+@@ deskew
-+@@ apply shiftrows transform
-+@@
-+@@
-+@@ Writes out to [r2], and increments or decrements it
-+@@ Keeps track of round number mod 4 in r8
-+@@ Preserves q0
-+@@ Clobbers q1-q5
-+@@
-+.type _vpaes_schedule_mangle,%function
-+.align 4
-+_vpaes_schedule_mangle:
-+ tst $dir, $dir
-+ vmov q4, q0 @ vmovdqa %xmm0, %xmm4 # save xmm0 for later
-+ adr r11, .Lk_mc_forward @ Must be aligned to 8 mod 16.
-+ vld1.64 {q5}, [r11] @ vmovdqa .Lk_mc_forward(%rip),%xmm5
-+
-+ @ encrypting
-+ @ Write to q2 so we do not overlap table and destination below.
-+ veor q2, q0, $s63 @ vpxor .Lk_s63(%rip), %xmm0, %xmm4
-+ add $out, $out, #16 @ add \$16, %rdx
-+ vtbl.8 q4#lo, {q2}, q5#lo @ vpshufb %xmm5, %xmm4, %xmm4
-+ vtbl.8 q4#hi, {q2}, q5#hi
-+ vtbl.8 q1#lo, {q4}, q5#lo @ vpshufb %xmm5, %xmm4, %xmm1
-+ vtbl.8 q1#hi, {q4}, q5#hi
-+ vtbl.8 q3#lo, {q1}, q5#lo @ vpshufb %xmm5, %xmm1, %xmm3
-+ vtbl.8 q3#hi, {q1}, q5#hi
-+ veor q4, q4, q1 @ vpxor %xmm1, %xmm4, %xmm4
-+ vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1
-+ veor q3, q3, q4 @ vpxor %xmm4, %xmm3, %xmm3
-+
-+.Lschedule_mangle_both:
-+ @ Write to q2 so table and destination do not overlap.
-+ vtbl.8 q2#lo, {q3}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3
-+ vtbl.8 q2#hi, {q3}, q1#hi
-+ add r8, r8, #64-16 @ add \$-16, %r8
-+ and r8, r8, #~(1<<6) @ and \$0x30, %r8
-+ vst1.64 {q2}, [$out] @ vmovdqu %xmm3, (%rdx)
-+ bx lr
-+.size _vpaes_schedule_mangle,.-_vpaes_schedule_mangle
-+
-+.globl GFp_vpaes_set_encrypt_key
-+.type GFp_vpaes_set_encrypt_key,%function
-+.align 4
-+GFp_vpaes_set_encrypt_key:
-+ stmdb sp!, {r7-r11, lr}
-+ vstmdb sp!, {d8-d15}
-+
-+ lsr r9, $bits, #5 @ shr \$5,%eax
-+ add r9, r9, #5 @ \$5,%eax
-+ str r9, [$out,#240] @ mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5;
-+
-+ mov $dir, #0 @ mov \$0,%ecx
-+ mov r8, #0x30 @ mov \$0x30,%r8d
-+ bl _vpaes_schedule_core
-+ eor r0, r0, r0
-+
-+ vldmia sp!, {d8-d15}
-+ ldmia sp!, {r7-r11, pc} @ return
-+.size GFp_vpaes_set_encrypt_key,.-GFp_vpaes_set_encrypt_key
-+___
-+}
-+
-+{
-+my ($out, $inp) = map("r$_", (0..1));
-+my ($s0F, $s63, $s63_raw, $mc_forward) = map("q$_", (9..12));
-+
-+$code .= <<___;
-+
-+@ Additional constants for converting to bsaes.
-+.type _vpaes_convert_consts,%object
-+.align 4
-+_vpaes_convert_consts:
-+@ .Lk_opt_then_skew applies skew(opt(x)) XOR 0x63, where skew is the linear
-+@ transform in the AES S-box. 0x63 is incorporated into the low half of the
-+@ table. This was computed with the following script:
-+@
-+@ def u64s_to_u128(x, y):
-+@ return x | (y << 64)
-+@ def u128_to_u64s(w):
-+@ return w & ((1<<64)-1), w >> 64
-+@ def get_byte(w, i):
-+@ return (w >> (i*8)) & 0xff
-+@ def apply_table(table, b):
-+@ lo = b & 0xf
-+@ hi = b >> 4
-+@ return get_byte(table[0], lo) ^ get_byte(table[1], hi)
-+@ def opt(b):
-+@ table = [
-+@ u64s_to_u128(0xFF9F4929D6B66000, 0xF7974121DEBE6808),
-+@ u64s_to_u128(0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0),
-+@ ]
-+@ return apply_table(table, b)
-+@ def rot_byte(b, n):
-+@ return 0xff & ((b << n) | (b >> (8-n)))
-+@ def skew(x):
-+@ return (x ^ rot_byte(x, 1) ^ rot_byte(x, 2) ^ rot_byte(x, 3) ^
-+@ rot_byte(x, 4))
-+@ table = [0, 0]
-+@ for i in range(16):
-+@ table[0] |= (skew(opt(i)) ^ 0x63) << (i*8)
-+@ table[1] |= skew(opt(i<<4)) << (i*8)
-+@ print("\t.quad\t0x%016x, 0x%016x" % u128_to_u64s(table[0]))
-+@ print("\t.quad\t0x%016x, 0x%016x" % u128_to_u64s(table[1]))
-+.Lk_opt_then_skew:
-+ .quad 0x9cb8436798bc4763, 0x6440bb9f6044bf9b
-+ .quad 0x1f30062936192f00, 0xb49bad829db284ab
-+
-+@ void GFp_vpaes_encrypt_key_to_bsaes(AES_KEY *bsaes, const AES_KEY *vpaes);
-+.globl GFp_vpaes_encrypt_key_to_bsaes
-+.type GFp_vpaes_encrypt_key_to_bsaes,%function
-+.align 4
-+GFp_vpaes_encrypt_key_to_bsaes:
-+ stmdb sp!, {r11, lr}
-+
-+ @ See _vpaes_schedule_core for the key schedule logic. In particular,
-+ @ _vpaes_schedule_transform(.Lk_ipt) (section 2.2 of the paper),
-+ @ _vpaes_schedule_mangle (section 4.3), and .Lschedule_mangle_last
-+ @ contain the transformations not in the bsaes representation. This
-+ @ function inverts those transforms.
-+ @
-+ @ Note also that bsaes-armv7.pl expects aes-armv4.pl's key
-+ @ representation, which does not match the other aes_nohw_*
-+ @ implementations. The ARM aes_nohw_* stores each 32-bit word
-+ @ byteswapped, as a convenience for (unsupported) big-endian ARM, at the
-+ @ cost of extra REV and VREV32 operations in little-endian ARM.
-+
-+ vmov.i8 $s0F, #0x0f @ Required by _vpaes_schedule_transform
-+ adr r2, .Lk_mc_forward @ Must be aligned to 8 mod 16.
-+ add r3, r2, 0x90 @ .Lk_sr+0x10-.Lk_mc_forward = 0x90 (Apple's toolchain doesn't support the expression)
-+
-+ vld1.64 {$mc_forward}, [r2]
-+ vmov.i8 $s63, #0x5b @ .Lk_s63 from vpaes-x86_64
-+ adr r11, .Lk_opt @ Must be aligned to 8 mod 16.
-+ vmov.i8 $s63_raw, #0x63 @ .LK_s63 without .Lk_ipt applied
-+
-+ @ vpaes stores one fewer round count than bsaes, but the number of keys
-+ @ is the same.
-+ ldr r2, [$inp,#240]
-+ add r2, r2, #1
-+ str r2, [$out,#240]
-+
-+ @ The first key is transformed with _vpaes_schedule_transform(.Lk_ipt).
-+ @ Invert this with .Lk_opt.
-+ vld1.64 {q0}, [$inp]!
-+ bl _vpaes_schedule_transform
-+ vrev32.8 q0, q0
-+ vst1.64 {q0}, [$out]!
-+
-+ @ The middle keys have _vpaes_schedule_transform(.Lk_ipt) applied,
-+ @ followed by _vpaes_schedule_mangle. _vpaes_schedule_mangle XORs 0x63,
-+ @ multiplies by the circulant 0,1,1,1, then applies ShiftRows.
-+.Loop_enc_key_to_bsaes:
-+ vld1.64 {q0}, [$inp]!
-+
-+ @ Invert the ShiftRows step (see .Lschedule_mangle_both). Note we cycle
-+ @ r3 in the opposite direction and start at .Lk_sr+0x10 instead of 0x30.
-+ @ We use r3 rather than r8 to avoid a callee-saved register.
-+ vld1.64 {q1}, [r3]
-+ vtbl.8 q2#lo, {q0}, q1#lo
-+ vtbl.8 q2#hi, {q0}, q1#hi
-+ add r3, r3, #16
-+ and r3, r3, #~(1<<6)
-+ vmov q0, q2
-+
-+ @ Handle the last key differently.
-+ subs r2, r2, #1
-+ beq .Loop_enc_key_to_bsaes_last
-+
-+ @ Multiply by the circulant. This is its own inverse.
-+ vtbl.8 q1#lo, {q0}, $mc_forward#lo
-+ vtbl.8 q1#hi, {q0}, $mc_forward#hi
-+ vmov q0, q1
-+ vtbl.8 q2#lo, {q1}, $mc_forward#lo
-+ vtbl.8 q2#hi, {q1}, $mc_forward#hi
-+ veor q0, q0, q2
-+ vtbl.8 q1#lo, {q2}, $mc_forward#lo
-+ vtbl.8 q1#hi, {q2}, $mc_forward#hi
-+ veor q0, q0, q1
-+
-+ @ XOR and finish.
-+ veor q0, q0, $s63
-+ bl _vpaes_schedule_transform
-+ vrev32.8 q0, q0
-+ vst1.64 {q0}, [$out]!
-+ b .Loop_enc_key_to_bsaes
-+
-+.Loop_enc_key_to_bsaes_last:
-+ @ The final key does not have a basis transform (note
-+ @ .Lschedule_mangle_last inverts the original transform). It only XORs
-+ @ 0x63 and applies ShiftRows. The latter was already inverted in the
-+ @ loop. Note that, because we act on the original representation, we use
-+ @ $s63_raw, not $s63.
-+ veor q0, q0, $s63_raw
-+ vrev32.8 q0, q0
-+ vst1.64 {q0}, [$out]
-+
-+ @ Wipe registers which contained key material.
-+ veor q0, q0, q0
-+ veor q1, q1, q1
-+ veor q2, q2, q2
-+
-+ ldmia sp!, {r11, pc} @ return
-+.size GFp_vpaes_encrypt_key_to_bsaes,.-GFp_vpaes_encrypt_key_to_bsaes
-+___
-+}
-+
-+{
-+# Register-passed parameters.
-+my ($inp, $out, $len, $key) = map("r$_", 0..3);
-+# Temporaries. _vpaes_encrypt_core already uses r8..r11, so overlap $ivec and
-+# $tmp. $ctr is r7 because it must be preserved across calls.
-+my ($ctr, $ivec, $tmp) = map("r$_", 7..9);
-+
-+# void vpaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
-+# const AES_KEY *key, const uint8_t ivec[16]);
-+$code .= <<___;
-+.globl GFp_vpaes_ctr32_encrypt_blocks
-+.type GFp_vpaes_ctr32_encrypt_blocks,%function
-+.align 4
-+GFp_vpaes_ctr32_encrypt_blocks:
-+ mov ip, sp
-+ stmdb sp!, {r7-r11, lr}
-+ @ This function uses q4-q7 (d8-d15), which are callee-saved.
-+ vstmdb sp!, {d8-d15}
-+
-+ cmp $len, #0
-+ @ $ivec is passed on the stack.
-+ ldr $ivec, [ip]
-+ beq .Lctr32_done
-+
-+ @ _vpaes_encrypt_core expects the key in r2, so swap $len and $key.
-+ mov $tmp, $key
-+ mov $key, $len
-+ mov $len, $tmp
-+___
-+my ($len, $key) = ($key, $len);
-+$code .= <<___;
-+
-+ @ Load the IV and counter portion.
-+ ldr $ctr, [$ivec, #12]
-+ vld1.8 {q7}, [$ivec]
-+
-+ bl _vpaes_preheat
-+ rev $ctr, $ctr @ The counter is big-endian.
-+
-+.Lctr32_loop:
-+ vmov q0, q7
-+ vld1.8 {q6}, [$inp]! @ Load input ahead of time
-+ bl _vpaes_encrypt_core
-+ veor q0, q0, q6 @ XOR input and result
-+ vst1.8 {q0}, [$out]!
-+ subs $len, $len, #1
-+ @ Update the counter.
-+ add $ctr, $ctr, #1
-+ rev $tmp, $ctr
-+ vmov.32 q7#hi[1], $tmp
-+ bne .Lctr32_loop
-+
-+.Lctr32_done:
-+ vldmia sp!, {d8-d15}
-+ ldmia sp!, {r7-r11, pc} @ return
-+.size GFp_vpaes_ctr32_encrypt_blocks,.-GFp_vpaes_ctr32_encrypt_blocks
-+___
-+}
-+
-+foreach (split("\n",$code)) {
-+ s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo;
-+ print $_,"\n";
-+}
-+
-+close STDOUT;
-diff --git a/crypto/fipsmodule/aes/asm/vpaes-armv8.pl b/crypto/fipsmodule/aes/asm/vpaes-armv8.pl
-new file mode 100755
-index 0000000..b31bbb8
---- /dev/null
-+++ b/crypto/fipsmodule/aes/asm/vpaes-armv8.pl
-@@ -0,0 +1,837 @@
-+#! /usr/bin/env perl
-+# Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
-+#
-+# Licensed under the OpenSSL license (the "License"). You may not use
-+# this file except in compliance with the License. You can obtain a copy
-+# in the file LICENSE in the source distribution or at
-+# https://www.openssl.org/source/license.html
-+
-+
-+######################################################################
-+## Constant-time SSSE3 AES core implementation.
-+## version 0.1
-+##
-+## By Mike Hamburg (Stanford University), 2009
-+## Public domain.
-+##
-+## For details see http://shiftleft.org/papers/vector_aes/ and
-+## http://crypto.stanford.edu/vpaes/.
-+##
-+######################################################################
-+# ARMv8 NEON adaptation by <appro@openssl.org>
-+#
-+# Reason for undertaken effort is that there is at least one popular
-+# SoC based on Cortex-A53 that doesn't have crypto extensions.
-+#
-+# CBC enc ECB enc/dec(*) [bit-sliced enc/dec]
-+# Cortex-A53 21.5 18.1/20.6 [17.5/19.8 ]
-+# Cortex-A57 36.0(**) 20.4/24.9(**) [14.4/16.6 ]
-+# X-Gene 45.9(**) 45.8/57.7(**) [33.1/37.6(**) ]
-+# Denver(***) 16.6(**) 15.1/17.8(**) [8.80/9.93 ]
-+# Apple A7(***) 22.7(**) 10.9/14.3 [8.45/10.0 ]
-+# Mongoose(***) 26.3(**) 21.0/25.0(**) [13.3/16.8 ]
-+#
-+# (*) ECB denotes approximate result for parallelizable modes
-+# such as CBC decrypt, CTR, etc.;
-+# (**) these results are worse than scalar compiler-generated
-+# code, but it's constant-time and therefore preferred;
-+# (***) presented for reference/comparison purposes;
-+
-+$flavour = shift;
-+while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
-+
-+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
-+( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
-+( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
-+die "can't locate arm-xlate.pl";
-+
-+open OUT,"| \"$^X\" $xlate $flavour $output";
-+*STDOUT=*OUT;
-+
-+$code.=<<___;
-+#include <GFp/arm_arch.h>
-+
-+.section .rodata
-+
-+.type _vpaes_consts,%object
-+.align 7 // totally strategic alignment
-+_vpaes_consts:
-+.Lk_mc_forward: // mc_forward
-+ .quad 0x0407060500030201, 0x0C0F0E0D080B0A09
-+ .quad 0x080B0A0904070605, 0x000302010C0F0E0D
-+ .quad 0x0C0F0E0D080B0A09, 0x0407060500030201
-+ .quad 0x000302010C0F0E0D, 0x080B0A0904070605
-+.Lk_mc_backward:// mc_backward
-+ .quad 0x0605040702010003, 0x0E0D0C0F0A09080B
-+ .quad 0x020100030E0D0C0F, 0x0A09080B06050407
-+ .quad 0x0E0D0C0F0A09080B, 0x0605040702010003
-+ .quad 0x0A09080B06050407, 0x020100030E0D0C0F
-+.Lk_sr: // sr
-+ .quad 0x0706050403020100, 0x0F0E0D0C0B0A0908
-+ .quad 0x030E09040F0A0500, 0x0B06010C07020D08
-+ .quad 0x0F060D040B020900, 0x070E050C030A0108
-+ .quad 0x0B0E0104070A0D00, 0x0306090C0F020508
-+
-+//
-+// "Hot" constants
-+//
-+.Lk_inv: // inv, inva
-+ .quad 0x0E05060F0D080180, 0x040703090A0B0C02
-+ .quad 0x01040A060F0B0780, 0x030D0E0C02050809
-+.Lk_ipt: // input transform (lo, hi)
-+ .quad 0xC2B2E8985A2A7000, 0xCABAE09052227808
-+ .quad 0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81
-+.Lk_sbo: // sbou, sbot
-+ .quad 0xD0D26D176FBDC700, 0x15AABF7AC502A878
-+ .quad 0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA
-+.Lk_sb1: // sb1u, sb1t
-+ .quad 0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF
-+ .quad 0xB19BE18FCB503E00, 0xA5DF7A6E142AF544
-+.Lk_sb2: // sb2u, sb2t
-+ .quad 0x69EB88400AE12900, 0xC2A163C8AB82234A
-+ .quad 0xE27A93C60B712400, 0x5EB7E955BC982FCD
-+
-+//
-+// Key schedule constants
-+//
-+.Lk_dksd: // decryption key schedule: invskew x*D
-+ .quad 0xFEB91A5DA3E44700, 0x0740E3A45A1DBEF9
-+ .quad 0x41C277F4B5368300, 0x5FDC69EAAB289D1E
-+.Lk_dksb: // decryption key schedule: invskew x*B
-+ .quad 0x9A4FCA1F8550D500, 0x03D653861CC94C99
-+ .quad 0x115BEDA7B6FC4A00, 0xD993256F7E3482C8
-+.Lk_dkse: // decryption key schedule: invskew x*E + 0x63
-+ .quad 0xD5031CCA1FC9D600, 0x53859A4C994F5086
-+ .quad 0xA23196054FDC7BE8, 0xCD5EF96A20B31487
-+.Lk_dks9: // decryption key schedule: invskew x*9
-+ .quad 0xB6116FC87ED9A700, 0x4AED933482255BFC
-+ .quad 0x4576516227143300, 0x8BB89FACE9DAFDCE
-+
-+.Lk_rcon: // rcon
-+ .quad 0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81
-+
-+.Lk_opt: // output transform
-+ .quad 0xFF9F4929D6B66000, 0xF7974121DEBE6808
-+ .quad 0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0
-+.Lk_deskew: // deskew tables: inverts the sbox's "skew"
-+ .quad 0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A
-+ .quad 0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77
-+
-+.asciz "Vector Permutation AES for ARMv8, Mike Hamburg (Stanford University)"
-+.size _vpaes_consts,.-_vpaes_consts
-+.align 6
-+
-+.text
-+___
-+
-+{
-+my ($inp,$out,$key) = map("x$_",(0..2));
-+
-+my ($invlo,$invhi,$iptlo,$ipthi,$sbou,$sbot) = map("v$_.16b",(18..23));
-+my ($sb1u,$sb1t,$sb2u,$sb2t) = map("v$_.16b",(24..27));
-+my ($sb9u,$sb9t,$sbdu,$sbdt,$sbbu,$sbbt,$sbeu,$sbet)=map("v$_.16b",(24..31));
-+
-+$code.=<<___;
-+##
-+## _aes_preheat
-+##
-+## Fills register %r10 -> .aes_consts (so you can -fPIC)
-+## and %xmm9-%xmm15 as specified below.
-+##
-+.type _vpaes_encrypt_preheat,%function
-+.align 4
-+_vpaes_encrypt_preheat:
-+ adrp x10, :pg_hi21:.Lk_inv
-+ add x10, x10, :lo12:.Lk_inv
-+ movi v17.16b, #0x0f
-+ ld1 {v18.2d-v19.2d}, [x10],#32 // .Lk_inv
-+ ld1 {v20.2d-v23.2d}, [x10],#64 // .Lk_ipt, .Lk_sbo
-+ ld1 {v24.2d-v27.2d}, [x10] // .Lk_sb1, .Lk_sb2
-+ ret
-+.size _vpaes_encrypt_preheat,.-_vpaes_encrypt_preheat
-+
-+##
-+## _aes_encrypt_core
-+##
-+## AES-encrypt %xmm0.
-+##
-+## Inputs:
-+## %xmm0 = input
-+## %xmm9-%xmm15 as in _vpaes_preheat
-+## (%rdx) = scheduled keys
-+##
-+## Output in %xmm0
-+## Clobbers %xmm1-%xmm5, %r9, %r10, %r11, %rax
-+## Preserves %xmm6 - %xmm8 so you get some local vectors
-+##
-+##
-+.type _vpaes_encrypt_core,%function
-+.align 4
-+_vpaes_encrypt_core:
-+ mov x9, $key
-+ ldr w8, [$key,#240] // pull rounds
-+ adrp x11, :pg_hi21:.Lk_mc_forward+16
-+ add x11, x11, :lo12:.Lk_mc_forward+16
-+ // vmovdqa .Lk_ipt(%rip), %xmm2 # iptlo
-+ ld1 {v16.2d}, [x9], #16 // vmovdqu (%r9), %xmm5 # round0 key
-+ and v1.16b, v7.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1
-+ ushr v0.16b, v7.16b, #4 // vpsrlb \$4, %xmm0, %xmm0
-+ tbl v1.16b, {$iptlo}, v1.16b // vpshufb %xmm1, %xmm2, %xmm1
-+ // vmovdqa .Lk_ipt+16(%rip), %xmm3 # ipthi
-+ tbl v2.16b, {$ipthi}, v0.16b // vpshufb %xmm0, %xmm3, %xmm2
-+ eor v0.16b, v1.16b, v16.16b // vpxor %xmm5, %xmm1, %xmm0
-+ eor v0.16b, v0.16b, v2.16b // vpxor %xmm2, %xmm0, %xmm0
-+ b .Lenc_entry
-+
-+.align 4
-+.Lenc_loop:
-+ // middle of middle round
-+ add x10, x11, #0x40
-+ tbl v4.16b, {$sb1t}, v2.16b // vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u
-+ ld1 {v1.2d}, [x11], #16 // vmovdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[]
-+ tbl v0.16b, {$sb1u}, v3.16b // vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t
-+ eor v4.16b, v4.16b, v16.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
-+ tbl v5.16b, {$sb2t}, v2.16b // vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u
-+ eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = A
-+ tbl v2.16b, {$sb2u}, v3.16b // vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t
-+ ld1 {v4.2d}, [x10] // vmovdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[]
-+ tbl v3.16b, {v0.16b}, v1.16b // vpshufb %xmm1, %xmm0, %xmm3 # 0 = B
-+ eor v2.16b, v2.16b, v5.16b // vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A
-+ tbl v0.16b, {v0.16b}, v4.16b // vpshufb %xmm4, %xmm0, %xmm0 # 3 = D
-+ eor v3.16b, v3.16b, v2.16b // vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B
-+ tbl v4.16b, {v3.16b}, v1.16b // vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C
-+ eor v0.16b, v0.16b, v3.16b // vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D
-+ and x11, x11, #~(1<<6) // and \$0x30, %r11 # ... mod 4
-+ eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D
-+ sub w8, w8, #1 // nr--
-+
-+.Lenc_entry:
-+ // top of round
-+ and v1.16b, v0.16b, v17.16b // vpand %xmm0, %xmm9, %xmm1 # 0 = k
-+ ushr v0.16b, v0.16b, #4 // vpsrlb \$4, %xmm0, %xmm0 # 1 = i
-+ tbl v5.16b, {$invhi}, v1.16b // vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k
-+ eor v1.16b, v1.16b, v0.16b // vpxor %xmm0, %xmm1, %xmm1 # 0 = j
-+ tbl v3.16b, {$invlo}, v0.16b // vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
-+ tbl v4.16b, {$invlo}, v1.16b // vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
-+ eor v3.16b, v3.16b, v5.16b // vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
-+ eor v4.16b, v4.16b, v5.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
-+ tbl v2.16b, {$invlo}, v3.16b // vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak
-+ tbl v3.16b, {$invlo}, v4.16b // vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak
-+ eor v2.16b, v2.16b, v1.16b // vpxor %xmm1, %xmm2, %xmm2 # 2 = io
-+ eor v3.16b, v3.16b, v0.16b // vpxor %xmm0, %xmm3, %xmm3 # 3 = jo
-+ ld1 {v16.2d}, [x9],#16 // vmovdqu (%r9), %xmm5
-+ cbnz w8, .Lenc_loop
-+
-+ // middle of last round
-+ add x10, x11, #0x80
-+ // vmovdqa -0x60(%r10), %xmm4 # 3 : sbou .Lk_sbo
-+ // vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16
-+ tbl v4.16b, {$sbou}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou
-+ ld1 {v1.2d}, [x10] // vmovdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[]
-+ tbl v0.16b, {$sbot}, v3.16b // vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t
-+ eor v4.16b, v4.16b, v16.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
-+ eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = A
-+ tbl v0.16b, {v0.16b}, v1.16b // vpshufb %xmm1, %xmm0, %xmm0
-+ ret
-+.size _vpaes_encrypt_core,.-_vpaes_encrypt_core
-+
-+.globl GFp_vpaes_encrypt
-+.type GFp_vpaes_encrypt,%function
-+.align 4
-+GFp_vpaes_encrypt:
-+ AARCH64_SIGN_LINK_REGISTER
-+ stp x29,x30,[sp,#-16]!
-+ add x29,sp,#0
-+
-+ ld1 {v7.16b}, [$inp]
-+ bl _vpaes_encrypt_preheat
-+ bl _vpaes_encrypt_core
-+ st1 {v0.16b}, [$out]
-+
-+ ldp x29,x30,[sp],#16
-+ AARCH64_VALIDATE_LINK_REGISTER
-+ ret
-+.size GFp_vpaes_encrypt,.-GFp_vpaes_encrypt
-+
-+.type _vpaes_encrypt_2x,%function
-+.align 4
-+_vpaes_encrypt_2x:
-+ mov x9, $key
-+ ldr w8, [$key,#240] // pull rounds
-+ adrp x11, :pg_hi21:.Lk_mc_forward+16
-+ add x11, x11, :lo12:.Lk_mc_forward+16
-+ // vmovdqa .Lk_ipt(%rip), %xmm2 # iptlo
-+ ld1 {v16.2d}, [x9], #16 // vmovdqu (%r9), %xmm5 # round0 key
-+ and v1.16b, v14.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1
-+ ushr v0.16b, v14.16b, #4 // vpsrlb \$4, %xmm0, %xmm0
-+ and v9.16b, v15.16b, v17.16b
-+ ushr v8.16b, v15.16b, #4
-+ tbl v1.16b, {$iptlo}, v1.16b // vpshufb %xmm1, %xmm2, %xmm1
-+ tbl v9.16b, {$iptlo}, v9.16b
-+ // vmovdqa .Lk_ipt+16(%rip), %xmm3 # ipthi
-+ tbl v2.16b, {$ipthi}, v0.16b // vpshufb %xmm0, %xmm3, %xmm2
-+ tbl v10.16b, {$ipthi}, v8.16b
-+ eor v0.16b, v1.16b, v16.16b // vpxor %xmm5, %xmm1, %xmm0
-+ eor v8.16b, v9.16b, v16.16b
-+ eor v0.16b, v0.16b, v2.16b // vpxor %xmm2, %xmm0, %xmm0
-+ eor v8.16b, v8.16b, v10.16b
-+ b .Lenc_2x_entry
-+
-+.align 4
-+.Lenc_2x_loop:
-+ // middle of middle round
-+ add x10, x11, #0x40
-+ tbl v4.16b, {$sb1t}, v2.16b // vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u
-+ tbl v12.16b, {$sb1t}, v10.16b
-+ ld1 {v1.2d}, [x11], #16 // vmovdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[]
-+ tbl v0.16b, {$sb1u}, v3.16b // vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t
-+ tbl v8.16b, {$sb1u}, v11.16b
-+ eor v4.16b, v4.16b, v16.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
-+ eor v12.16b, v12.16b, v16.16b
-+ tbl v5.16b, {$sb2t}, v2.16b // vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u
-+ tbl v13.16b, {$sb2t}, v10.16b
-+ eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = A
-+ eor v8.16b, v8.16b, v12.16b
-+ tbl v2.16b, {$sb2u}, v3.16b // vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t
-+ tbl v10.16b, {$sb2u}, v11.16b
-+ ld1 {v4.2d}, [x10] // vmovdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[]
-+ tbl v3.16b, {v0.16b}, v1.16b // vpshufb %xmm1, %xmm0, %xmm3 # 0 = B
-+ tbl v11.16b, {v8.16b}, v1.16b
-+ eor v2.16b, v2.16b, v5.16b // vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A
-+ eor v10.16b, v10.16b, v13.16b
-+ tbl v0.16b, {v0.16b}, v4.16b // vpshufb %xmm4, %xmm0, %xmm0 # 3 = D
-+ tbl v8.16b, {v8.16b}, v4.16b
-+ eor v3.16b, v3.16b, v2.16b // vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B
-+ eor v11.16b, v11.16b, v10.16b
-+ tbl v4.16b, {v3.16b}, v1.16b // vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C
-+ tbl v12.16b, {v11.16b},v1.16b
-+ eor v0.16b, v0.16b, v3.16b // vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D
-+ eor v8.16b, v8.16b, v11.16b
-+ and x11, x11, #~(1<<6) // and \$0x30, %r11 # ... mod 4
-+ eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D
-+ eor v8.16b, v8.16b, v12.16b
-+ sub w8, w8, #1 // nr--
-+
-+.Lenc_2x_entry:
-+ // top of round
-+ and v1.16b, v0.16b, v17.16b // vpand %xmm0, %xmm9, %xmm1 # 0 = k
-+ ushr v0.16b, v0.16b, #4 // vpsrlb \$4, %xmm0, %xmm0 # 1 = i
-+ and v9.16b, v8.16b, v17.16b
-+ ushr v8.16b, v8.16b, #4
-+ tbl v5.16b, {$invhi},v1.16b // vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k
-+ tbl v13.16b, {$invhi},v9.16b
-+ eor v1.16b, v1.16b, v0.16b // vpxor %xmm0, %xmm1, %xmm1 # 0 = j
-+ eor v9.16b, v9.16b, v8.16b
-+ tbl v3.16b, {$invlo},v0.16b // vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
-+ tbl v11.16b, {$invlo},v8.16b
-+ tbl v4.16b, {$invlo},v1.16b // vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
-+ tbl v12.16b, {$invlo},v9.16b
-+ eor v3.16b, v3.16b, v5.16b // vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
-+ eor v11.16b, v11.16b, v13.16b
-+ eor v4.16b, v4.16b, v5.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
-+ eor v12.16b, v12.16b, v13.16b
-+ tbl v2.16b, {$invlo},v3.16b // vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak
-+ tbl v10.16b, {$invlo},v11.16b
-+ tbl v3.16b, {$invlo},v4.16b // vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak
-+ tbl v11.16b, {$invlo},v12.16b
-+ eor v2.16b, v2.16b, v1.16b // vpxor %xmm1, %xmm2, %xmm2 # 2 = io
-+ eor v10.16b, v10.16b, v9.16b
-+ eor v3.16b, v3.16b, v0.16b // vpxor %xmm0, %xmm3, %xmm3 # 3 = jo
-+ eor v11.16b, v11.16b, v8.16b
-+ ld1 {v16.2d}, [x9],#16 // vmovdqu (%r9), %xmm5
-+ cbnz w8, .Lenc_2x_loop
-+
-+ // middle of last round
-+ add x10, x11, #0x80
-+ // vmovdqa -0x60(%r10), %xmm4 # 3 : sbou .Lk_sbo
-+ // vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16
-+ tbl v4.16b, {$sbou}, v2.16b // vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou
-+ tbl v12.16b, {$sbou}, v10.16b
-+ ld1 {v1.2d}, [x10] // vmovdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[]
-+ tbl v0.16b, {$sbot}, v3.16b // vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t
-+ tbl v8.16b, {$sbot}, v11.16b
-+ eor v4.16b, v4.16b, v16.16b // vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
-+ eor v12.16b, v12.16b, v16.16b
-+ eor v0.16b, v0.16b, v4.16b // vpxor %xmm4, %xmm0, %xmm0 # 0 = A
-+ eor v8.16b, v8.16b, v12.16b
-+ tbl v0.16b, {v0.16b},v1.16b // vpshufb %xmm1, %xmm0, %xmm0
-+ tbl v1.16b, {v8.16b},v1.16b
-+ ret
-+.size _vpaes_encrypt_2x,.-_vpaes_encrypt_2x
-+___
-+}
-+{
-+my ($inp,$bits,$out,$dir)=("x0","w1","x2","w3");
-+my ($invlo,$invhi,$iptlo,$ipthi,$rcon) = map("v$_.16b",(18..21,8));
-+
-+$code.=<<___;
-+########################################################
-+## ##
-+## AES key schedule ##
-+## ##
-+########################################################
-+.type _vpaes_key_preheat,%function
-+.align 4
-+_vpaes_key_preheat:
-+ adrp x10, :pg_hi21:.Lk_inv
-+ add x10, x10, :lo12:.Lk_inv
-+ movi v16.16b, #0x5b // .Lk_s63
-+ adrp x11, :pg_hi21:.Lk_sb1
-+ add x11, x11, :lo12:.Lk_sb1
-+ movi v17.16b, #0x0f // .Lk_s0F
-+ ld1 {v18.2d-v21.2d}, [x10] // .Lk_inv, .Lk_ipt
-+ adrp x10, :pg_hi21:.Lk_dksd
-+ add x10, x10, :lo12:.Lk_dksd
-+ ld1 {v22.2d-v23.2d}, [x11] // .Lk_sb1
-+ adrp x11, :pg_hi21:.Lk_mc_forward
-+ add x11, x11, :lo12:.Lk_mc_forward
-+ ld1 {v24.2d-v27.2d}, [x10],#64 // .Lk_dksd, .Lk_dksb
-+ ld1 {v28.2d-v31.2d}, [x10],#64 // .Lk_dkse, .Lk_dks9
-+ ld1 {v8.2d}, [x10] // .Lk_rcon
-+ ld1 {v9.2d}, [x11] // .Lk_mc_forward[0]
-+ ret
-+.size _vpaes_key_preheat,.-_vpaes_key_preheat
-+
-+.type _vpaes_schedule_core,%function
-+.align 4
-+_vpaes_schedule_core:
-+ AARCH64_SIGN_LINK_REGISTER
-+ stp x29, x30, [sp,#-16]!
-+ add x29,sp,#0
-+
-+ bl _vpaes_key_preheat // load the tables
-+
-+ ld1 {v0.16b}, [$inp],#16 // vmovdqu (%rdi), %xmm0 # load key (unaligned)
-+
-+ // input transform
-+ mov v3.16b, v0.16b // vmovdqa %xmm0, %xmm3
-+ bl _vpaes_schedule_transform
-+ mov v7.16b, v0.16b // vmovdqa %xmm0, %xmm7
-+
-+ adrp x10, :pg_hi21:.Lk_sr // lea .Lk_sr(%rip),%r10
-+ add x10, x10, :lo12:.Lk_sr
-+
-+ add x8, x8, x10
-+
-+ // encrypting, output zeroth round key after transform
-+ st1 {v0.2d}, [$out] // vmovdqu %xmm0, (%rdx)
-+
-+ cmp $bits, #192 // cmp \$192, %esi
-+ b.hi .Lschedule_256
-+ b.eq .Lschedule_192
-+ // 128: fall though
-+
-+##
-+## .schedule_128
-+##
-+## 128-bit specific part of key schedule.
-+##
-+## This schedule is really simple, because all its parts
-+## are accomplished by the subroutines.
-+##
-+.Lschedule_128:
-+ mov $inp, #10 // mov \$10, %esi
-+
-+.Loop_schedule_128:
-+ sub $inp, $inp, #1 // dec %esi
-+ bl _vpaes_schedule_round
-+ cbz $inp, .Lschedule_mangle_last
-+ bl _vpaes_schedule_mangle // write output
-+ b .Loop_schedule_128
-+
-+##
-+## .aes_schedule_192
-+##
-+## 192-bit specific part of key schedule.
-+##
-+## The main body of this schedule is the same as the 128-bit
-+## schedule, but with more smearing. The long, high side is
-+## stored in %xmm7 as before, and the short, low side is in
-+## the high bits of %xmm6.
-+##
-+## This schedule is somewhat nastier, however, because each
-+## round produces 192 bits of key material, or 1.5 round keys.
-+## Therefore, on each cycle we do 2 rounds and produce 3 round
-+## keys.
-+##
-+.align 4
-+.Lschedule_192:
-+ sub $inp, $inp, #8
-+ ld1 {v0.16b}, [$inp] // vmovdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned)
-+ bl _vpaes_schedule_transform // input transform
-+ mov v6.16b, v0.16b // vmovdqa %xmm0, %xmm6 # save short part
-+ eor v4.16b, v4.16b, v4.16b // vpxor %xmm4, %xmm4, %xmm4 # clear 4
-+ ins v6.d[0], v4.d[0] // vmovhlps %xmm4, %xmm6, %xmm6 # clobber low side with zeros
-+ mov $inp, #4 // mov \$4, %esi
-+
-+.Loop_schedule_192:
-+ sub $inp, $inp, #1 // dec %esi
-+ bl _vpaes_schedule_round
-+ ext v0.16b, v6.16b, v0.16b, #8 // vpalignr \$8,%xmm6,%xmm0,%xmm0
-+ bl _vpaes_schedule_mangle // save key n
-+ bl _vpaes_schedule_192_smear
-+ bl _vpaes_schedule_mangle // save key n+1
-+ bl _vpaes_schedule_round
-+ cbz $inp, .Lschedule_mangle_last
-+ bl _vpaes_schedule_mangle // save key n+2
-+ bl _vpaes_schedule_192_smear
-+ b .Loop_schedule_192
-+
-+##
-+## .aes_schedule_256
-+##
-+## 256-bit specific part of key schedule.
-+##
-+## The structure here is very similar to the 128-bit
-+## schedule, but with an additional "low side" in
-+## %xmm6. The low side's rounds are the same as the
-+## high side's, except no rcon and no rotation.
-+##
-+.align 4
-+.Lschedule_256:
-+ ld1 {v0.16b}, [$inp] // vmovdqu 16(%rdi),%xmm0 # load key part 2 (unaligned)
-+ bl _vpaes_schedule_transform // input transform
-+ mov $inp, #7 // mov \$7, %esi
-+
-+.Loop_schedule_256:
-+ sub $inp, $inp, #1 // dec %esi
-+ bl _vpaes_schedule_mangle // output low result
-+ mov v6.16b, v0.16b // vmovdqa %xmm0, %xmm6 # save cur_lo in xmm6
-+
-+ // high round
-+ bl _vpaes_schedule_round
-+ cbz $inp, .Lschedule_mangle_last
-+ bl _vpaes_schedule_mangle
-+
-+ // low round. swap xmm7 and xmm6
-+ dup v0.4s, v0.s[3] // vpshufd \$0xFF, %xmm0, %xmm0
-+ movi v4.16b, #0
-+ mov v5.16b, v7.16b // vmovdqa %xmm7, %xmm5
-+ mov v7.16b, v6.16b // vmovdqa %xmm6, %xmm7
-+ bl _vpaes_schedule_low_round
-+ mov v7.16b, v5.16b // vmovdqa %xmm5, %xmm7
-+
-+ b .Loop_schedule_256
-+
-+##
-+## .aes_schedule_mangle_last
-+##
-+## Mangler for last round of key schedule
-+## Mangles %xmm0
-+## when encrypting, outputs out(%xmm0) ^ 63
-+## when decrypting, outputs unskew(%xmm0)
-+##
-+## Always called right before return... jumps to cleanup and exits
-+##
-+.align 4
-+.Lschedule_mangle_last:
-+ // schedule last round key from xmm0
-+ adrp x11, :pg_hi21:.Lk_deskew // lea .Lk_deskew(%rip),%r11 # prepare to deskew
-+ add x11, x11, :lo12:.Lk_deskew
-+
-+ cbnz $dir, .Lschedule_mangle_last_dec
-+
-+ // encrypting
-+ ld1 {v1.2d}, [x8] // vmovdqa (%r8,%r10),%xmm1
-+ adrp x11, :pg_hi21:.Lk_opt // lea .Lk_opt(%rip), %r11 # prepare to output transform
-+ add x11, x11, :lo12:.Lk_opt
-+ add $out, $out, #32 // add \$32, %rdx
-+ tbl v0.16b, {v0.16b}, v1.16b // vpshufb %xmm1, %xmm0, %xmm0 # output permute
-+
-+.Lschedule_mangle_last_dec:
-+ ld1 {v20.2d-v21.2d}, [x11] // reload constants
-+ sub $out, $out, #16 // add \$-16, %rdx
-+ eor v0.16b, v0.16b, v16.16b // vpxor .Lk_s63(%rip), %xmm0, %xmm0
-+ bl _vpaes_schedule_transform // output transform
-+ st1 {v0.2d}, [$out] // vmovdqu %xmm0, (%rdx) # save last key
-+
-+ // cleanup
-+ eor v0.16b, v0.16b, v0.16b // vpxor %xmm0, %xmm0, %xmm0
-+ eor v1.16b, v1.16b, v1.16b // vpxor %xmm1, %xmm1, %xmm1
-+ eor v2.16b, v2.16b, v2.16b // vpxor %xmm2, %xmm2, %xmm2
-+ eor v3.16b, v3.16b, v3.16b // vpxor %xmm3, %xmm3, %xmm3
-+ eor v4.16b, v4.16b, v4.16b // vpxor %xmm4, %xmm4, %xmm4
-+ eor v5.16b, v5.16b, v5.16b // vpxor %xmm5, %xmm5, %xmm5
-+ eor v6.16b, v6.16b, v6.16b // vpxor %xmm6, %xmm6, %xmm6
-+ eor v7.16b, v7.16b, v7.16b // vpxor %xmm7, %xmm7, %xmm7
-+ ldp x29, x30, [sp],#16
-+ AARCH64_VALIDATE_LINK_REGISTER
-+ ret
-+.size _vpaes_schedule_core,.-_vpaes_schedule_core
-+
-+##
-+## .aes_schedule_192_smear
-+##
-+## Smear the short, low side in the 192-bit key schedule.
-+##
-+## Inputs:
-+## %xmm7: high side, b a x y
-+## %xmm6: low side, d c 0 0
-+## %xmm13: 0
-+##
-+## Outputs:
-+## %xmm6: b+c+d b+c 0 0
-+## %xmm0: b+c+d b+c b a
-+##
-+.type _vpaes_schedule_192_smear,%function
-+.align 4
-+_vpaes_schedule_192_smear:
-+ movi v1.16b, #0
-+ dup v0.4s, v7.s[3]
-+ ins v1.s[3], v6.s[2] // vpshufd \$0x80, %xmm6, %xmm1 # d c 0 0 -> c 0 0 0
-+ ins v0.s[0], v7.s[2] // vpshufd \$0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a
-+ eor v6.16b, v6.16b, v1.16b // vpxor %xmm1, %xmm6, %xmm6 # -> c+d c 0 0
-+ eor v1.16b, v1.16b, v1.16b // vpxor %xmm1, %xmm1, %xmm1
-+ eor v6.16b, v6.16b, v0.16b // vpxor %xmm0, %xmm6, %xmm6 # -> b+c+d b+c b a
-+ mov v0.16b, v6.16b // vmovdqa %xmm6, %xmm0
-+ ins v6.d[0], v1.d[0] // vmovhlps %xmm1, %xmm6, %xmm6 # clobber low side with zeros
-+ ret
-+.size _vpaes_schedule_192_smear,.-_vpaes_schedule_192_smear
-+
-+##
-+## .aes_schedule_round
-+##
-+## Runs one main round of the key schedule on %xmm0, %xmm7
-+##
-+## Specifically, runs subbytes on the high dword of %xmm0
-+## then rotates it by one byte and xors into the low dword of
-+## %xmm7.
-+##
-+## Adds rcon from low byte of %xmm8, then rotates %xmm8 for
-+## next rcon.
-+##
-+## Smears the dwords of %xmm7 by xoring the low into the
-+## second low, result into third, result into highest.
-+##
-+## Returns results in %xmm7 = %xmm0.
-+## Clobbers %xmm1-%xmm4, %r11.
-+##
-+.type _vpaes_schedule_round,%function
-+.align 4
-+_vpaes_schedule_round:
-+ // extract rcon from xmm8
-+ movi v4.16b, #0 // vpxor %xmm4, %xmm4, %xmm4
-+ ext v1.16b, $rcon, v4.16b, #15 // vpalignr \$15, %xmm8, %xmm4, %xmm1
-+ ext $rcon, $rcon, $rcon, #15 // vpalignr \$15, %xmm8, %xmm8, %xmm8
-+ eor v7.16b, v7.16b, v1.16b // vpxor %xmm1, %xmm7, %xmm7
-+
-+ // rotate
-+ dup v0.4s, v0.s[3] // vpshufd \$0xFF, %xmm0, %xmm0
-+ ext v0.16b, v0.16b, v0.16b, #1 // vpalignr \$1, %xmm0, %xmm0, %xmm0
-+
-+ // fall through...
-+
-+ // low round: same as high round, but no rotation and no rcon.
-+_vpaes_schedule_low_round:
-+ // smear xmm7
-+ ext v1.16b, v4.16b, v7.16b, #12 // vpslldq \$4, %xmm7, %xmm1
-+ eor v7.16b, v7.16b, v1.16b // vpxor %xmm1, %xmm7, %xmm7
-+ ext v4.16b, v4.16b, v7.16b, #8 // vpslldq \$8, %xmm7, %xmm4
-+
-+ // subbytes
-+ and v1.16b, v0.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1 # 0 = k
-+ ushr v0.16b, v0.16b, #4 // vpsrlb \$4, %xmm0, %xmm0 # 1 = i
-+ eor v7.16b, v7.16b, v4.16b // vpxor %xmm4, %xmm7, %xmm7
-+ tbl v2.16b, {$invhi}, v1.16b // vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k
-+ eor v1.16b, v1.16b, v0.16b // vpxor %xmm0, %xmm1, %xmm1 # 0 = j
-+ tbl v3.16b, {$invlo}, v0.16b // vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
-+ eor v3.16b, v3.16b, v2.16b // vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
-+ tbl v4.16b, {$invlo}, v1.16b // vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
-+ eor v7.16b, v7.16b, v16.16b // vpxor .Lk_s63(%rip), %xmm7, %xmm7
-+ tbl v3.16b, {$invlo}, v3.16b // vpshufb %xmm3, %xmm10, %xmm3 # 2 = 1/iak
-+ eor v4.16b, v4.16b, v2.16b // vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
-+ tbl v2.16b, {$invlo}, v4.16b // vpshufb %xmm4, %xmm10, %xmm2 # 3 = 1/jak
-+ eor v3.16b, v3.16b, v1.16b // vpxor %xmm1, %xmm3, %xmm3 # 2 = io
-+ eor v2.16b, v2.16b, v0.16b // vpxor %xmm0, %xmm2, %xmm2 # 3 = jo
-+ tbl v4.16b, {v23.16b}, v3.16b // vpshufb %xmm3, %xmm13, %xmm4 # 4 = sbou
-+ tbl v1.16b, {v22.16b}, v2.16b // vpshufb %xmm2, %xmm12, %xmm1 # 0 = sb1t
-+ eor v1.16b, v1.16b, v4.16b // vpxor %xmm4, %xmm1, %xmm1 # 0 = sbox output
-+
-+ // add in smeared stuff
-+ eor v0.16b, v1.16b, v7.16b // vpxor %xmm7, %xmm1, %xmm0
-+ eor v7.16b, v1.16b, v7.16b // vmovdqa %xmm0, %xmm7
-+ ret
-+.size _vpaes_schedule_round,.-_vpaes_schedule_round
-+
-+##
-+## .aes_schedule_transform
-+##
-+## Linear-transform %xmm0 according to tables at (%r11)
-+##
-+## Requires that %xmm9 = 0x0F0F... as in preheat
-+## Output in %xmm0
-+## Clobbers %xmm1, %xmm2
-+##
-+.type _vpaes_schedule_transform,%function
-+.align 4
-+_vpaes_schedule_transform:
-+ and v1.16b, v0.16b, v17.16b // vpand %xmm9, %xmm0, %xmm1
-+ ushr v0.16b, v0.16b, #4 // vpsrlb \$4, %xmm0, %xmm0
-+ // vmovdqa (%r11), %xmm2 # lo
-+ tbl v2.16b, {$iptlo}, v1.16b // vpshufb %xmm1, %xmm2, %xmm2
-+ // vmovdqa 16(%r11), %xmm1 # hi
-+ tbl v0.16b, {$ipthi}, v0.16b // vpshufb %xmm0, %xmm1, %xmm0
-+ eor v0.16b, v0.16b, v2.16b // vpxor %xmm2, %xmm0, %xmm0
-+ ret
-+.size _vpaes_schedule_transform,.-_vpaes_schedule_transform
-+
-+##
-+## .aes_schedule_mangle
-+##
-+## Mangle xmm0 from (basis-transformed) standard version
-+## to our version.
-+##
-+## On encrypt,
-+## xor with 0x63
-+## multiply by circulant 0,1,1,1
-+## apply shiftrows transform
-+##
-+## On decrypt,
-+## xor with 0x63
-+## multiply by "inverse mixcolumns" circulant E,B,D,9
-+## deskew
-+## apply shiftrows transform
-+##
-+##
-+## Writes out to (%rdx), and increments or decrements it
-+## Keeps track of round number mod 4 in %r8
-+## Preserves xmm0
-+## Clobbers xmm1-xmm5
-+##
-+.type _vpaes_schedule_mangle,%function
-+.align 4
-+_vpaes_schedule_mangle:
-+ mov v4.16b, v0.16b // vmovdqa %xmm0, %xmm4 # save xmm0 for later
-+ // vmovdqa .Lk_mc_forward(%rip),%xmm5
-+
-+ // encrypting
-+ eor v4.16b, v0.16b, v16.16b // vpxor .Lk_s63(%rip), %xmm0, %xmm4
-+ add $out, $out, #16 // add \$16, %rdx
-+ tbl v4.16b, {v4.16b}, v9.16b // vpshufb %xmm5, %xmm4, %xmm4
-+ tbl v1.16b, {v4.16b}, v9.16b // vpshufb %xmm5, %xmm4, %xmm1
-+ tbl v3.16b, {v1.16b}, v9.16b // vpshufb %xmm5, %xmm1, %xmm3
-+ eor v4.16b, v4.16b, v1.16b // vpxor %xmm1, %xmm4, %xmm4
-+ ld1 {v1.2d}, [x8] // vmovdqa (%r8,%r10), %xmm1
-+ eor v3.16b, v3.16b, v4.16b // vpxor %xmm4, %xmm3, %xmm3
-+
-+.Lschedule_mangle_both:
-+ tbl v3.16b, {v3.16b}, v1.16b // vpshufb %xmm1, %xmm3, %xmm3
-+ add x8, x8, #64-16 // add \$-16, %r8
-+ and x8, x8, #~(1<<6) // and \$0x30, %r8
-+ st1 {v3.2d}, [$out] // vmovdqu %xmm3, (%rdx)
-+ ret
-+.size _vpaes_schedule_mangle,.-_vpaes_schedule_mangle
-+
-+.globl GFp_vpaes_set_encrypt_key
-+.type GFp_vpaes_set_encrypt_key,%function
-+.align 4
-+GFp_vpaes_set_encrypt_key:
-+ AARCH64_SIGN_LINK_REGISTER
-+ stp x29,x30,[sp,#-16]!
-+ add x29,sp,#0
-+ stp d8,d9,[sp,#-16]! // ABI spec says so
-+
-+ lsr w9, $bits, #5 // shr \$5,%eax
-+ add w9, w9, #5 // \$5,%eax
-+ str w9, [$out,#240] // mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5;
-+
-+ mov $dir, #0 // mov \$0,%ecx
-+ mov x8, #0x30 // mov \$0x30,%r8d
-+ bl _vpaes_schedule_core
-+ eor x0, x0, x0
-+
-+ ldp d8,d9,[sp],#16
-+ ldp x29,x30,[sp],#16
-+ AARCH64_VALIDATE_LINK_REGISTER
-+ ret
-+.size GFp_vpaes_set_encrypt_key,.-GFp_vpaes_set_encrypt_key
-+___
-+}
-+{
-+my ($inp,$out,$len,$key,$ivec) = map("x$_",(0..4));
-+my ($ctr, $ctr_tmp) = ("w6", "w7");
-+
-+# void GFp_vpaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
-+# const AES_KEY *key, const uint8_t ivec[16]);
-+$code.=<<___;
-+.globl GFp_vpaes_ctr32_encrypt_blocks
-+.type GFp_vpaes_ctr32_encrypt_blocks,%function
-+.align 4
-+GFp_vpaes_ctr32_encrypt_blocks:
-+ AARCH64_SIGN_LINK_REGISTER
-+ stp x29,x30,[sp,#-16]!
-+ add x29,sp,#0
-+ stp d8,d9,[sp,#-16]! // ABI spec says so
-+ stp d10,d11,[sp,#-16]!
-+ stp d12,d13,[sp,#-16]!
-+ stp d14,d15,[sp,#-16]!
-+
-+ cbz $len, .Lctr32_done
-+
-+ // Note, unlike the other functions, $len here is measured in blocks,
-+ // not bytes.
-+ mov x17, $len
-+ mov x2, $key
-+
-+ // Load the IV and counter portion.
-+ ldr $ctr, [$ivec, #12]
-+ ld1 {v7.16b}, [$ivec]
-+
-+ bl _vpaes_encrypt_preheat
-+ tst x17, #1
-+ rev $ctr, $ctr // The counter is big-endian.
-+ b.eq .Lctr32_prep_loop
-+
-+ // Handle one block so the remaining block count is even for
-+ // _vpaes_encrypt_2x.
-+ ld1 {v6.16b}, [$inp], #16 // Load input ahead of time
-+ bl _vpaes_encrypt_core
-+ eor v0.16b, v0.16b, v6.16b // XOR input and result
-+ st1 {v0.16b}, [$out], #16
-+ subs x17, x17, #1
-+ // Update the counter.
-+ add $ctr, $ctr, #1
-+ rev $ctr_tmp, $ctr
-+ mov v7.s[3], $ctr_tmp
-+ b.ls .Lctr32_done
-+
-+.Lctr32_prep_loop:
-+ // _vpaes_encrypt_core takes its input from v7, while _vpaes_encrypt_2x
-+ // uses v14 and v15.
-+ mov v15.16b, v7.16b
-+ mov v14.16b, v7.16b
-+ add $ctr, $ctr, #1
-+ rev $ctr_tmp, $ctr
-+ mov v15.s[3], $ctr_tmp
-+
-+.Lctr32_loop:
-+ ld1 {v6.16b,v7.16b}, [$inp], #32 // Load input ahead of time
-+ bl _vpaes_encrypt_2x
-+ eor v0.16b, v0.16b, v6.16b // XOR input and result
-+ eor v1.16b, v1.16b, v7.16b // XOR input and result (#2)
-+ st1 {v0.16b,v1.16b}, [$out], #32
-+ subs x17, x17, #2
-+ // Update the counter.
-+ add $ctr_tmp, $ctr, #1
-+ add $ctr, $ctr, #2
-+ rev $ctr_tmp, $ctr_tmp
-+ mov v14.s[3], $ctr_tmp
-+ rev $ctr_tmp, $ctr
-+ mov v15.s[3], $ctr_tmp
-+ b.hi .Lctr32_loop
-+
-+.Lctr32_done:
-+ ldp d14,d15,[sp],#16
-+ ldp d12,d13,[sp],#16
-+ ldp d10,d11,[sp],#16
-+ ldp d8,d9,[sp],#16
-+ ldp x29,x30,[sp],#16
-+ AARCH64_VALIDATE_LINK_REGISTER
-+ ret
-+.size GFp_vpaes_ctr32_encrypt_blocks,.-GFp_vpaes_ctr32_encrypt_blocks
-+___
-+}
-+
-+print $code;
-+
-+close STDOUT or die "error closing STDOUT";
-diff --git a/crypto/fipsmodule/modes/asm/ghash-neon-armv8.pl b/crypto/fipsmodule/modes/asm/ghash-neon-armv8.pl
-new file mode 100644
-index 0000000..7e52ad6
---- /dev/null
-+++ b/crypto/fipsmodule/modes/asm/ghash-neon-armv8.pl
-@@ -0,0 +1,294 @@
-+#! /usr/bin/env perl
-+# Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved.
-+#
-+# Licensed under the OpenSSL license (the "License"). You may not use
-+# this file except in compliance with the License. You can obtain a copy
-+# in the file LICENSE in the source distribution or at
-+# https://www.openssl.org/source/license.html
-+
-+# ====================================================================
-+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
-+# project. The module is, however, dual licensed under OpenSSL and
-+# CRYPTOGAMS licenses depending on where you obtain it. For further
-+# details see http://www.openssl.org/~appro/cryptogams/.
-+# ====================================================================
-+
-+# This file was adapted to AArch64 from the 32-bit version in ghash-armv4.pl. It
-+# implements the multiplication algorithm described in:
-+#
-+# Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software
-+# Polynomial Multiplication on ARM Processors using the NEON Engine.
-+#
-+# http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf
-+#
-+# The main distinction to keep in mind between 32-bit NEON and AArch64 SIMD is
-+# AArch64 cannot compute over the upper halves of SIMD registers. In 32-bit
-+# NEON, the low and high halves of the 128-bit register q0 are accessible as
-+# 64-bit registers d0 and d1, respectively. In AArch64, dN is the lower half of
-+# vN. Where the 32-bit version would use the upper half, this file must keep
-+# halves in separate registers.
-+#
-+# The other distinction is in syntax. 32-bit NEON embeds lane information in the
-+# instruction name, while AArch64 uses suffixes on the registers. For instance,
-+# left-shifting 64-bit lanes of a SIMD register in 32-bit would be written:
-+#
-+# vshl.i64 q0, q0, #1
-+#
-+# in 64-bit, it would be written:
-+#
-+# shl v0.2d, v0.2d, #1
-+#
-+# See Programmer's Guide for ARMv8-A, section 7 for details.
-+# http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf
-+#
-+# Finally, note the 8-bit and 64-bit polynomial multipliers in AArch64 differ
-+# only by suffix. pmull vR.8h, vA.8b, vB.8b multiplies eight 8-bit polynomials
-+# and is always available. pmull vR.1q, vA.1d, vB.1d multiplies a 64-bit
-+# polynomial and is conditioned on the PMULL extension. This file emulates the
-+# latter with the former.
-+
-+use strict;
-+
-+my $flavour = shift;
-+my $output;
-+if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; }
-+else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} }
-+
-+if ($flavour && $flavour ne "void") {
-+ $0 =~ m/(.*[\/\\])[^\/\\]+$/;
-+ my $dir = $1;
-+ my $xlate;
-+ ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
-+ ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
-+ die "can't locate arm-xlate.pl";
-+
-+ open OUT,"| \"$^X\" $xlate $flavour $output";
-+ *STDOUT=*OUT;
-+} else {
-+ open OUT,">$output";
-+ *STDOUT=*OUT;
-+}
-+
-+my ($Xi, $Htbl, $inp, $len) = map("x$_", (0..3)); # argument block
-+my ($Xl, $Xm, $Xh, $INlo, $INhi) = map("v$_", (0..4));
-+my ($Hlo, $Hhi, $Hhl) = map("v$_", (5..7));
-+# d8-d15 are callee-saved, so avoid v8-v15. AArch64 SIMD has plenty of registers
-+# to spare.
-+my ($t0, $t1, $t2, $t3) = map("v$_", (16..19));
-+my ($t0l_t1l, $t0h_t1h, $t2l_t3l, $t2h_t3h) = map("v$_", (20..23));
-+my ($k48_k32, $k16_k0) = map("v$_", (24..25));
-+
-+my $code = "";
-+
-+# clmul64x64 emits code which emulates pmull $r.1q, $a.1d, $b.1d. $r, $a, and $b
-+# must be distinct from $t* and $k*. $t* are clobbered by the emitted code.
-+sub clmul64x64 {
-+my ($r, $a, $b) = @_;
-+$code .= <<___;
-+ ext $t0.8b, $a.8b, $a.8b, #1 // A1
-+ pmull $t0.8h, $t0.8b, $b.8b // F = A1*B
-+ ext $r.8b, $b.8b, $b.8b, #1 // B1
-+ pmull $r.8h, $a.8b, $r.8b // E = A*B1
-+ ext $t1.8b, $a.8b, $a.8b, #2 // A2
-+ pmull $t1.8h, $t1.8b, $b.8b // H = A2*B
-+ ext $t3.8b, $b.8b, $b.8b, #2 // B2
-+ pmull $t3.8h, $a.8b, $t3.8b // G = A*B2
-+ ext $t2.8b, $a.8b, $a.8b, #3 // A3
-+ eor $t0.16b, $t0.16b, $r.16b // L = E + F
-+ pmull $t2.8h, $t2.8b, $b.8b // J = A3*B
-+ ext $r.8b, $b.8b, $b.8b, #3 // B3
-+ eor $t1.16b, $t1.16b, $t3.16b // M = G + H
-+ pmull $r.8h, $a.8b, $r.8b // I = A*B3
-+
-+ // Here we diverge from the 32-bit version. It computes the following
-+ // (instructions reordered for clarity):
-+ //
-+ // veor \$t0#lo, \$t0#lo, \$t0#hi @ t0 = P0 + P1 (L)
-+ // vand \$t0#hi, \$t0#hi, \$k48
-+ // veor \$t0#lo, \$t0#lo, \$t0#hi
-+ //
-+ // veor \$t1#lo, \$t1#lo, \$t1#hi @ t1 = P2 + P3 (M)
-+ // vand \$t1#hi, \$t1#hi, \$k32
-+ // veor \$t1#lo, \$t1#lo, \$t1#hi
-+ //
-+ // veor \$t2#lo, \$t2#lo, \$t2#hi @ t2 = P4 + P5 (N)
-+ // vand \$t2#hi, \$t2#hi, \$k16
-+ // veor \$t2#lo, \$t2#lo, \$t2#hi
-+ //
-+ // veor \$t3#lo, \$t3#lo, \$t3#hi @ t3 = P6 + P7 (K)
-+ // vmov.i64 \$t3#hi, #0
-+ //
-+ // \$kN is a mask with the bottom N bits set. AArch64 cannot compute on
-+ // upper halves of SIMD registers, so we must split each half into
-+ // separate registers. To compensate, we pair computations up and
-+ // parallelize.
-+
-+ ext $t3.8b, $b.8b, $b.8b, #4 // B4
-+ eor $t2.16b, $t2.16b, $r.16b // N = I + J
-+ pmull $t3.8h, $a.8b, $t3.8b // K = A*B4
-+
-+ // This can probably be scheduled more efficiently. For now, we just
-+ // pair up independent instructions.
-+ zip1 $t0l_t1l.2d, $t0.2d, $t1.2d
-+ zip1 $t2l_t3l.2d, $t2.2d, $t3.2d
-+ zip2 $t0h_t1h.2d, $t0.2d, $t1.2d
-+ zip2 $t2h_t3h.2d, $t2.2d, $t3.2d
-+ eor $t0l_t1l.16b, $t0l_t1l.16b, $t0h_t1h.16b
-+ eor $t2l_t3l.16b, $t2l_t3l.16b, $t2h_t3h.16b
-+ and $t0h_t1h.16b, $t0h_t1h.16b, $k48_k32.16b
-+ and $t2h_t3h.16b, $t2h_t3h.16b, $k16_k0.16b
-+ eor $t0l_t1l.16b, $t0l_t1l.16b, $t0h_t1h.16b
-+ eor $t2l_t3l.16b, $t2l_t3l.16b, $t2h_t3h.16b
-+ zip1 $t0.2d, $t0l_t1l.2d, $t0h_t1h.2d
-+ zip1 $t2.2d, $t2l_t3l.2d, $t2h_t3h.2d
-+ zip2 $t1.2d, $t0l_t1l.2d, $t0h_t1h.2d
-+ zip2 $t3.2d, $t2l_t3l.2d, $t2h_t3h.2d
-+
-+ ext $t0.16b, $t0.16b, $t0.16b, #15 // t0 = t0 << 8
-+ ext $t1.16b, $t1.16b, $t1.16b, #14 // t1 = t1 << 16
-+ pmull $r.8h, $a.8b, $b.8b // D = A*B
-+ ext $t3.16b, $t3.16b, $t3.16b, #12 // t3 = t3 << 32
-+ ext $t2.16b, $t2.16b, $t2.16b, #13 // t2 = t2 << 24
-+ eor $t0.16b, $t0.16b, $t1.16b
-+ eor $t2.16b, $t2.16b, $t3.16b
-+ eor $r.16b, $r.16b, $t0.16b
-+ eor $r.16b, $r.16b, $t2.16b
-+___
-+}
-+
-+$code .= <<___;
-+#include <GFp/arm_arch.h>
-+
-+.text
-+
-+.global GFp_gcm_init_neon
-+.type GFp_gcm_init_neon,%function
-+.align 4
-+GFp_gcm_init_neon:
-+ AARCH64_VALID_CALL_TARGET
-+ // This function is adapted from gcm_init_v8. xC2 is t3.
-+ ld1 {$t1.2d}, [x1] // load H
-+ movi $t3.16b, #0xe1
-+ shl $t3.2d, $t3.2d, #57 // 0xc2.0
-+ ext $INlo.16b, $t1.16b, $t1.16b, #8
-+ ushr $t2.2d, $t3.2d, #63
-+ dup $t1.4s, $t1.s[1]
-+ ext $t0.16b, $t2.16b, $t3.16b, #8 // t0=0xc2....01
-+ ushr $t2.2d, $INlo.2d, #63
-+ sshr $t1.4s, $t1.4s, #31 // broadcast carry bit
-+ and $t2.16b, $t2.16b, $t0.16b
-+ shl $INlo.2d, $INlo.2d, #1
-+ ext $t2.16b, $t2.16b, $t2.16b, #8
-+ and $t0.16b, $t0.16b, $t1.16b
-+ orr $INlo.16b, $INlo.16b, $t2.16b // H<<<=1
-+ eor $Hlo.16b, $INlo.16b, $t0.16b // twisted H
-+ st1 {$Hlo.2d}, [x0] // store Htable[0]
-+ ret
-+.size GFp_gcm_init_neon,.-GFp_gcm_init_neon
-+
-+.global GFp_gcm_gmult_neon
-+.type GFp_gcm_gmult_neon,%function
-+.align 4
-+GFp_gcm_gmult_neon:
-+ AARCH64_VALID_CALL_TARGET
-+ ld1 {$INlo.16b}, [$Xi] // load Xi
-+ ld1 {$Hlo.1d}, [$Htbl], #8 // load twisted H
-+ ld1 {$Hhi.1d}, [$Htbl]
-+ adrp x9, :pg_hi21:.Lmasks // load constants
-+ add x9, x9, :lo12:.Lmasks
-+ ld1 {$k48_k32.2d, $k16_k0.2d}, [x9]
-+ rev64 $INlo.16b, $INlo.16b // byteswap Xi
-+ ext $INlo.16b, $INlo.16b, $INlo.16b, #8
-+ eor $Hhl.8b, $Hlo.8b, $Hhi.8b // Karatsuba pre-processing
-+
-+ mov $len, #16
-+ b .Lgmult_neon
-+.size GFp_gcm_gmult_neon,.-GFp_gcm_gmult_neon
-+
-+.global GFp_gcm_ghash_neon
-+.type GFp_gcm_ghash_neon,%function
-+.align 4
-+GFp_gcm_ghash_neon:
-+ AARCH64_VALID_CALL_TARGET
-+ ld1 {$Xl.16b}, [$Xi] // load Xi
-+ ld1 {$Hlo.1d}, [$Htbl], #8 // load twisted H
-+ ld1 {$Hhi.1d}, [$Htbl]
-+ adrp x9, :pg_hi21:.Lmasks // load constants
-+ add x9, x9, :lo12:.Lmasks
-+ ld1 {$k48_k32.2d, $k16_k0.2d}, [x9]
-+ rev64 $Xl.16b, $Xl.16b // byteswap Xi
-+ ext $Xl.16b, $Xl.16b, $Xl.16b, #8
-+ eor $Hhl.8b, $Hlo.8b, $Hhi.8b // Karatsuba pre-processing
-+
-+.Loop_neon:
-+ ld1 {$INlo.16b}, [$inp], #16 // load inp
-+ rev64 $INlo.16b, $INlo.16b // byteswap inp
-+ ext $INlo.16b, $INlo.16b, $INlo.16b, #8
-+ eor $INlo.16b, $INlo.16b, $Xl.16b // inp ^= Xi
-+
-+.Lgmult_neon:
-+ // Split the input into $INlo and $INhi. (The upper halves are unused,
-+ // so it is okay to leave them alone.)
-+ ins $INhi.d[0], $INlo.d[1]
-+___
-+&clmul64x64 ($Xl, $Hlo, $INlo); # H.lo·Xi.lo
-+$code .= <<___;
-+ eor $INlo.8b, $INlo.8b, $INhi.8b // Karatsuba pre-processing
-+___
-+&clmul64x64 ($Xm, $Hhl, $INlo); # (H.lo+H.hi)·(Xi.lo+Xi.hi)
-+&clmul64x64 ($Xh, $Hhi, $INhi); # H.hi·Xi.hi
-+$code .= <<___;
-+ ext $t0.16b, $Xl.16b, $Xh.16b, #8
-+ eor $Xm.16b, $Xm.16b, $Xl.16b // Karatsuba post-processing
-+ eor $Xm.16b, $Xm.16b, $Xh.16b
-+ eor $Xm.16b, $Xm.16b, $t0.16b // Xm overlaps Xh.lo and Xl.hi
-+ ins $Xl.d[1], $Xm.d[0] // Xh|Xl - 256-bit result
-+ // This is a no-op due to the ins instruction below.
-+ // ins $Xh.d[0], $Xm.d[1]
-+
-+ // equivalent of reduction_avx from ghash-x86_64.pl
-+ shl $t1.2d, $Xl.2d, #57 // 1st phase
-+ shl $t2.2d, $Xl.2d, #62
-+ eor $t2.16b, $t2.16b, $t1.16b //
-+ shl $t1.2d, $Xl.2d, #63
-+ eor $t2.16b, $t2.16b, $t1.16b //
-+ // Note Xm contains {Xl.d[1], Xh.d[0]}.
-+ eor $t2.16b, $t2.16b, $Xm.16b
-+ ins $Xl.d[1], $t2.d[0] // Xl.d[1] ^= t2.d[0]
-+ ins $Xh.d[0], $t2.d[1] // Xh.d[0] ^= t2.d[1]
-+
-+ ushr $t2.2d, $Xl.2d, #1 // 2nd phase
-+ eor $Xh.16b, $Xh.16b,$Xl.16b
-+ eor $Xl.16b, $Xl.16b,$t2.16b //
-+ ushr $t2.2d, $t2.2d, #6
-+ ushr $Xl.2d, $Xl.2d, #1 //
-+ eor $Xl.16b, $Xl.16b, $Xh.16b //
-+ eor $Xl.16b, $Xl.16b, $t2.16b //
-+
-+ subs $len, $len, #16
-+ bne .Loop_neon
-+
-+ rev64 $Xl.16b, $Xl.16b // byteswap Xi and write
-+ ext $Xl.16b, $Xl.16b, $Xl.16b, #8
-+ st1 {$Xl.16b}, [$Xi]
-+
-+ ret
-+.size GFp_gcm_ghash_neon,.-GFp_gcm_ghash_neon
-+
-+.section .rodata
-+.align 4
-+.Lmasks:
-+.quad 0x0000ffffffffffff // k48
-+.quad 0x00000000ffffffff // k32
-+.quad 0x000000000000ffff // k16
-+.quad 0x0000000000000000 // k0
-+.asciz "GHASH for ARMv8, derived from ARMv4 version by <appro\@openssl.org>"
-+.align 2
-+___
-+
-+foreach (split("\n",$code)) {
-+ s/\`([^\`]*)\`/eval $1/geo;
-+
-+ print $_,"\n";
-+}
-+close STDOUT or die "error closing STDOUT"; # enforce flush
---
-Efraim Flashner <efraim@flashner.co.il> רנשלפ םירפא
-GPG key = A28B F40C 3E55 1372 662D 14F7 41AA E7DC CA3D 8351
-Confidentiality cannot be guaranteed on emails sent or received unencrypted
-
diff --git a/gnu/packages/patches/rust-ring-0.16-test-files.patch b/gnu/packages/patches/rust-ring-0.16-test-files.patch
deleted file mode 100644
index dbe5c0f4ee..0000000000
--- a/gnu/packages/patches/rust-ring-0.16-test-files.patch
+++ /dev/null
@@ -1,54 +0,0 @@
-This file exists in the upstream repository at the commit which
-corresponds to the ring-0.16.20 release, but was excluded from the
-release tarball.
-
----
- tests/ed25519_verify_tests.txt | 34 ++++++++++++++++++++++++++++++++++
- 1 file changed, 34 insertions(+)
- create mode 100644 tests/ed25519_verify_tests.txt
-
-diff --git a/tests/ed25519_verify_tests.txt b/tests/ed25519_verify_tests.txt
-new file mode 100644
-index 0000000..74c94b3
---- /dev/null
-+++ b/tests/ed25519_verify_tests.txt
-@@ -0,0 +1,34 @@
-+# BoringSSL TEST(Ed25519Test Malleability)
-+
-+# Control; S is in range.
-+MESSAGE = 54657374
-+SIG = 7c38e026f29e14aabd059a0f2db8b0cd783040609a8be684db12f82a27774ab07a9155711ecfaf7f99f277bad0c6ae7e39d4eef676573336a5c51eb6f946b30d
-+PUB = 7d4d0e7f6153a69b6242b522abbee685fda4420f8834b108c3bdae369ef549fa
-+Result = P
-+
-+# Same as above, but with the order L added to S so it is out of range.
-+# BoringSSL commit 472ba2c2dd52d06a657a63b7fbf02732a6649d21
-+MESSAGE = 54657374
-+SIG = 7c38e026f29e14aabd059a0f2db8b0cd783040609a8be684db12f82a27774ab067654bce3832c2d76f8f6f5dafc08d9339d4eef676573336a5c51eb6f946b31d
-+PUB = 7d4d0e7f6153a69b6242b522abbee685fda4420f8834b108c3bdae369ef549fa
-+Result = F
-+
-+
-+# BoringSSL commit 3094902fcdc2db2cc832fa854b9a6a8be383926c
-+MESSAGE = 124e583f8b8eca58bb29c271b41d36986bbc45541f8e51f9cb0133eca447601e
-+SIG = dac119d6ca87fc59ae611c157048f4d4fc932a149dbe20ec6effd1436abf83ea05c7df0fef06147241259113909bc71bd3c53ba4464ffcad3c0968f2ffffff0f
-+PUB = 100fdf47fb94f1536a4f7c3fda27383fa03375a8f527c537e6f1703c47f94f86
-+Result = P
-+
-+# Control. Same key as above; same message and signature as below, except S is in range.
-+PUB = 100fdf47fb94f1536a4f7c3fda27383fa03375a8f527c537e6f1703c47f94f86
-+MESSAGE = 6a0bc2b0057cedfc0fa2e3f7f7d39279b30f454a69dfd1117c758d86b19d85e0
-+SIG = 0971f86d2c9c78582524a103cb9cf949522ae528f8054dc20107d999be673ff4f58ac9d20ec563133cabc6230b1db8625f8446639ede46ad4df4053000000000
-+Result = P
-+
-+# Same key as above, but S is out of range.
-+# BoringSSL commit 472ba2c2dd52d06a657a63b7fbf02732a6649d21
-+PUB = 100fdf47fb94f1536a4f7c3fda27383fa03375a8f527c537e6f1703c47f94f86
-+MESSAGE = 6a0bc2b0057cedfc0fa2e3f7f7d39279b30f454a69dfd1117c758d86b19d85e0
-+SIG = 0971f86d2c9c78582524a103cb9cf949522ae528f8054dc20107d999be673ff4e25ebf2f2928766b1248bec6e91697775f8446639ede46ad4df4053000000010
-+Result = F
---
-Efraim Flashner <efraim@flashner.co.il> רנשלפ םירפא
-GPG key = A28B F40C 3E55 1372 662D 14F7 41AA E7DC CA3D 8351
-Confidentiality cannot be guaranteed on emails sent or received unencrypted
-