1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
|
;;; GNU Guix --- Functional package management for GNU
;;; Copyright © 2013, 2014, 2015, 2017, 2022 Ludovic Courtès <ludo@gnu.org>
;;;
;;; This file is part of GNU Guix.
;;;
;;; GNU Guix is free software; you can redistribute it and/or modify it
;;; under the terms of the GNU General Public License as published by
;;; the Free Software Foundation; either version 3 of the License, or (at
;;; your option) any later version.
;;;
;;; GNU Guix is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;;; GNU General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License
;;; along with GNU Guix. If not, see <http://www.gnu.org/licenses/>.
(define-module (guix monads)
#:use-module ((system syntax)
#:select (syntax-local-binding))
#:use-module (ice-9 match)
#:use-module (srfi srfi-1)
#:use-module (srfi srfi-9)
#:use-module (srfi srfi-26)
#:export (;; Monads.
define-monad
monad?
monad-bind
monad-return
template-directory
;; Syntax.
>>=
return
with-monad
mlet
mlet*
mbegin
mwhen
munless
mparameterize
lift0 lift1 lift2 lift3 lift4 lift5 lift6 lift7 lift
listm
foldm
mapm
sequence
anym
;; Concrete monads.
%identity-monad
%state-monad
state-return
state-bind
current-state
set-current-state
state-push
state-pop
run-with-state))
;;; Commentary:
;;;
;;; This module implements the general mechanism of monads, and provides in
;;; particular an instance of the "state" monad. The API was inspired by that
;;; of Racket's "better-monads" module (see
;;; <http://planet.racket-lang.org/package-source/toups/functional.plt/1/1/planet-docs/better-monads-guide/index.html>).
;;; The implementation and use case were influenced by Oleg Kysielov's
;;; "Monadic Programming in Scheme" (see
;;; <http://okmij.org/ftp/Scheme/monad-in-Scheme.html>).
;;;
;;; Code:
;; Record type for monads manipulated at run time.
(define-record-type <monad>
(make-monad bind return)
monad?
(bind monad-bind)
(return monad-return)) ; TODO: Add 'plus' and 'zero'
(define-syntax define-monad
(lambda (s)
"Define the monad under NAME, with the given bind and return methods."
(define prefix (string->symbol "% "))
(define (make-rtd-name name)
(datum->syntax name
(symbol-append prefix (syntax->datum name) '-rtd)))
(syntax-case s (bind return)
((_ name (bind b) (return r))
(with-syntax ((rtd (make-rtd-name #'name)))
#`(begin
(define rtd
;; The record type, for use at run time.
(make-monad b r))
;; Instantiate all the templates, specialized for this monad.
(template-directory instantiations name)
(define-syntax name
;; An "inlined record", for use at expansion time. The goal is
;; to allow 'bind' and 'return' to be resolved at expansion
;; time, in the common case where the monad is accessed
;; directly as NAME.
(lambda (s)
(syntax-case s (%bind %return)
((_ %bind) #'b)
((_ %return) #'r)
(_ #'rtd))))))))))
;; Expansion- and run-time state of the template directory. This needs to be
;; available at run time (and not just at expansion time) so we can
;; instantiate templates defined in other modules, or use instances defined
;; elsewhere.
(eval-when (load expand eval)
;; Mapping of syntax objects denoting the template to a pair containing (1)
;; the syntax object of the parameter over which it is templated, and (2)
;; the syntax of its body.
(define-once %templates (make-hash-table))
(define (register-template! name param body)
(hash-set! %templates name (cons param body)))
;; List of template instances, where each entry is a triplet containing the
;; syntax of the name, the actual parameter for which the template is
;; specialized, and the syntax object referring to this specialization (the
;; procedure's identifier.)
(define-once %template-instances '())
(define (register-template-instance! name actual instance)
(set! %template-instances
(cons (list name actual instance) %template-instances))))
(define-syntax template-directory
(lambda (s)
"This is a \"stateful macro\" to register and lookup templates and
template instances."
(define location
(syntax-source s))
(define current-info-port
;; Port for debugging info.
(const (%make-void-port "w")))
(define location-string
(format #f "~a:~a:~a"
(assq-ref location 'filename)
(and=> (assq-ref location 'line) 1+)
(assq-ref location 'column)))
(define (matching-instance? name actual)
(match-lambda
((name* instance-param proc)
(and (free-identifier=? name name*)
(or (equal? actual instance-param)
(and (identifier? actual)
(identifier? instance-param)
(free-identifier=? instance-param
actual)))
proc))))
(define (instance-identifier name actual)
(define stem
(string-append
" "
(symbol->string (syntax->datum name))
(if (identifier? actual)
(string-append " " (symbol->string (syntax->datum actual)))
"")
" instance"))
(datum->syntax actual (string->symbol stem)))
(define (instance-definition name template actual)
(match template
((formal . body)
(let ((instance (instance-identifier name actual)))
(format (current-info-port)
"~a: info: specializing '~a' for '~a' as '~a'~%"
location-string
(syntax->datum name) (syntax->datum actual)
(syntax->datum instance))
(register-template-instance! name actual instance)
#`(begin
(define #,instance
(let-syntax ((#,formal (identifier-syntax #,actual)))
#,body))
;; Generate code to register the thing at run time.
(register-template-instance! #'#,name #'#,actual
#'#,instance))))))
(syntax-case s (register! lookup exists? instantiations)
((_ register! name param body)
;; Register NAME as a template on PARAM with the given BODY.
(begin
(register-template! #'name #'param #'body)
;; Generate code to register the template at run time. XXX: Because
;; of this, BODY must not contain ellipses.
#'(register-template! #'name #'param #'body)))
((_ lookup name actual)
;; Search for an instance of template NAME for this ACTUAL parameter.
;; On success, expand to the identifier of the instance; otherwise
;; expand to #f.
(any (matching-instance? #'name #'actual) %template-instances))
((_ exists? name actual)
;; Likewise, but return a Boolean.
(let ((result (->bool
(any (matching-instance? #'name #'actual)
%template-instances))))
(unless result
(format (current-warning-port)
"~a: warning: no specialization of template '~a' for '~a'~%"
location-string
(syntax->datum #'name) (syntax->datum #'actual)))
result))
((_ instantiations actual)
;; Expand to the definitions of all the existing templates
;; specialized for ACTUAL.
#`(begin
#,@(hash-map->list (cut instance-definition <> <> #'actual)
%templates))))))
(define-syntax define-template
(lambda (s)
"Define a template, which is a procedure that can be specialized over its
first argument. In our case, the first argument is typically the identifier
of a monad.
Defining templates for procedures like 'mapm' allows us to make have a
specialized version of those procedures for each monad that we define, such
that calls to:
(mapm %state-monad proc lst)
automatically expand to:
(#{ mapm %state-monad instance}# proc lst)
Here, #{ mapm %state-monad instance}# is specialized for %state-monad, and
thus it contains inline calls to %state-bind and %state-return. This avoids
repeated calls to 'struct-ref' to get the 'bind' and 'return' procedure of the
monad, and allows 'bind' and 'return' to be inlined, which in turn allows for
more optimizations."
(syntax-case s ()
((_ (name arg0 args ...) body ...)
(with-syntax ((generic-name (datum->syntax
#'name
(symbol-append '#{ %}#
(syntax->datum #'name)
'-generic)))
(original-name #'name))
#`(begin
(template-directory register! name arg0
(lambda (args ...)
body ...))
(define (generic-name arg0 args ...)
;; The generic instance of NAME, for when no specialization was
;; found.
body ...)
(define-syntax name
(lambda (s)
(syntax-case s ()
((_ arg0* args ...)
;; Expand to either the specialized instance or the
;; generic instance of template ORIGINAL-NAME.
#'(if (template-directory exists? original-name arg0*)
((template-directory lookup original-name arg0*)
args ...)
(generic-name arg0* args ...)))
(_
#'generic-name))))))))))
(define-syntax-parameter >>=
;; The name 'bind' is already taken, so we choose this (obscure) symbol.
(lambda (s)
(syntax-violation '>>= ">>= (bind) used outside of 'with-monad'" s)))
(define-syntax-parameter return
(lambda (s)
(syntax-violation 'return "return used outside of 'with-monad'" s)))
(define-syntax-rule (bind-syntax bind)
"Return a macro transformer that handles the expansion of '>>=' expressions
using BIND as the binary bind operator.
This macro exists to allow the expansion of n-ary '>>=' expressions, even
though BIND is simply binary, as in:
(with-monad %state-monad
(>>= (return 1)
(lift 1+ %state-monad)
(lift 1+ %state-monad)))
"
(lambda (stx)
(define (expand body)
(syntax-case body ()
((_ mval mproc)
#'(bind mval mproc))
((x mval mproc0 mprocs (... ...))
(expand #'(>>= (>>= mval mproc0)
mprocs (... ...))))))
(expand stx)))
(define-syntax with-monad
(lambda (s)
"Evaluate BODY in the context of MONAD, and return its result."
(syntax-case s ()
((_ monad body ...)
(eq? 'macro (syntax-local-binding #'monad))
;; MONAD is a syntax transformer, so we can obtain the bind and return
;; methods by directly querying it.
#'(syntax-parameterize ((>>= (bind-syntax (monad %bind)))
(return (identifier-syntax (monad %return))))
body ...))
((_ monad body ...)
;; MONAD refers to the <monad> record that represents the monad at run
;; time, so use the slow method.
#'(syntax-parameterize ((>>= (bind-syntax
(monad-bind monad)))
(return (identifier-syntax
(monad-return monad))))
body ...)))))
(define-syntax mlet*
(syntax-rules (->)
"Bind the given monadic values MVAL to the given variables VAR. When the
form is (VAR -> VAL), bind VAR to the non-monadic value VAL in the same way as
'let'."
;; Note: the '->' symbol corresponds to 'is:' in 'better-monads.rkt'.
((_ monad () body ...)
(with-monad monad body ...))
((_ monad ((var mval) rest ...) body ...)
(with-monad monad
(>>= mval
(lambda (var)
(mlet* monad (rest ...)
body ...)))))
((_ monad ((var -> val) rest ...) body ...)
(let ((var val))
(mlet* monad (rest ...)
body ...)))))
(define-syntax mlet
(lambda (s)
(syntax-case s ()
((_ monad ((var mval ...) ...) body ...)
(with-syntax (((temp ...) (generate-temporaries #'(var ...))))
#'(mlet* monad ((temp mval ...) ...)
(let ((var temp) ...)
body ...)))))))
(define-syntax mbegin
(syntax-rules (%current-monad)
"Bind MEXP and the following monadic expressions in sequence, returning
the result of the last expression. Every expression in the sequence must be a
monadic expression."
((_ %current-monad mexp)
mexp)
((_ %current-monad mexp rest ...)
(>>= mexp
(lambda (unused-value)
(mbegin %current-monad rest ...))))
((_ monad mexp)
(with-monad monad
mexp))
((_ monad mexp rest ...)
(with-monad monad
(>>= mexp
(lambda (unused-value)
(mbegin monad rest ...)))))))
(define-syntax mwhen
(syntax-rules ()
"When CONDITION is true, evaluate the sequence of monadic expressions
MEXP0..MEXP* as in an 'mbegin'. When CONDITION is false, return *unspecified*
in the current monad. Every expression in the sequence must be a monadic
expression."
((_ condition mexp0 mexp* ...)
(if condition
(mbegin %current-monad
mexp0 mexp* ...)
(return *unspecified*)))))
(define-syntax munless
(syntax-rules ()
"When CONDITION is false, evaluate the sequence of monadic expressions
MEXP0..MEXP* as in an 'mbegin'. When CONDITION is true, return *unspecified*
in the current monad. Every expression in the sequence must be a monadic
expression."
((_ condition mexp0 mexp* ...)
(if condition
(return *unspecified*)
(mbegin %current-monad
mexp0 mexp* ...)))))
(define-syntax mparameterize
(syntax-rules ()
"This form implements dynamic scoping, similar to 'parameterize', but in a
monadic context."
((_ monad ((parameter value) rest ...) body ...)
(let ((old-value (parameter)))
(mbegin monad
;; XXX: Non-local exits are not correctly handled.
(return (parameter value))
(mlet monad ((result (mparameterize monad (rest ...) body ...)))
(parameter old-value)
(return result)))))
((_ monad () body ...)
(mbegin monad body ...))))
(define-syntax define-lift
(syntax-rules ()
((_ liftn (args ...))
(define-syntax liftn
(lambda (s)
"Lift PROC to MONAD---i.e., return a monadic function in MONAD."
(syntax-case s ()
((liftn proc monad)
;; Inline the result of lifting PROC, such that 'return' can in
;; turn be open-coded.
#'(lambda (args ...)
(with-monad monad
(return (proc args ...)))))
(id
(identifier? #'id)
;; Slow path: Return a closure-returning procedure (we don't
;; guarantee (eq? LIFTN LIFTN), but that's fine.)
#'(lambda (proc monad)
(lambda (args ...)
(with-monad monad
(return (proc args ...))))))))))))
(define-lift lift0 ())
(define-lift lift1 (a))
(define-lift lift2 (a b))
(define-lift lift3 (a b c))
(define-lift lift4 (a b c d))
(define-lift lift5 (a b c d e))
(define-lift lift6 (a b c d e f))
(define-lift lift7 (a b c d e f g))
(define (lift proc monad)
"Lift PROC, a procedure that accepts an arbitrary number of arguments, to
MONAD---i.e., return a monadic function in MONAD."
(lambda args
(with-monad monad
(return (apply proc args)))))
(define-template (foldm monad mproc init lst)
"Fold MPROC over LST and return a monadic value seeded by INIT.
(foldm %state-monad (lift2 cons %state-monad) '() '(a b c))
=> '(c b a) ;monadic
"
(with-monad monad
(let loop ((lst lst)
(result init))
(match lst
(()
(return result))
((head . tail)
(>>= (mproc head result)
(lambda (result)
(loop tail result))))))))
(define-template (mapm monad mproc lst)
"Map MPROC over LST and return a monadic list.
(mapm %state-monad (lift1 1+ %state-monad) '(0 1 2))
=> (1 2 3) ;monadic
"
;; XXX: We don't use 'foldm' because template specialization wouldn't work
;; in this context.
(with-monad monad
(let mapm ((lst lst)
(result '()))
(match lst
(()
(return (reverse result)))
((head . tail)
(>>= (mproc head)
(lambda (head)
(mapm tail (cons head result)))))))))
(define-template (sequence monad lst)
"Turn the list of monadic values LST into a monadic list of values, by
evaluating each item of LST in sequence."
(with-monad monad
(let seq ((lstx lst)
(result '()))
(match lstx
(()
(return (reverse result)))
((head . tail)
(>>= head
(lambda (item)
(seq tail (cons item result)))))))))
(define-template (anym monad mproc lst)
"Apply MPROC to the list of values LST; return as a monadic value the first
value for which MPROC returns a true monadic value or #f. For example:
(anym %state-monad (lift1 odd? %state-monad) '(0 1 2))
=> #t ;monadic
"
(with-monad monad
(let loop ((lst lst))
(match lst
(()
(return #f))
((head . tail)
(>>= (mproc head)
(lambda (result)
(if result
(return result)
(loop tail)))))))))
(define-syntax listm
(lambda (s)
"Return a monadic list in MONAD from the monadic values MVAL."
(syntax-case s ()
((_ monad mval ...)
(with-syntax (((val ...) (generate-temporaries #'(mval ...))))
#'(mlet monad ((val mval) ...)
(return (list val ...))))))))
;;;
;;; Identity monad.
;;;
(define-inlinable (identity-return value)
value)
(define-inlinable (identity-bind mvalue mproc)
(mproc mvalue))
(define-monad %identity-monad
(bind identity-bind)
(return identity-return))
;;;
;;; State monad.
;;;
(define-inlinable (state-return value)
(lambda (state)
(values value state)))
(define-inlinable (state-bind mvalue mproc)
"Bind MVALUE, a value in the state monad, and pass it to MPROC."
(lambda (state)
(call-with-values
(lambda ()
(mvalue state))
(lambda (value state)
;; Note: as of Guile 2.0.11, declaring a variable to hold the result
;; of (mproc value) prevents a bit of unfolding/inlining.
((mproc value) state)))))
(define-monad %state-monad
(bind state-bind)
(return state-return))
(define* (run-with-state mval #:optional (state '()))
"Run monadic value MVAL starting with STATE as the initial state. Return
two values: the resulting value, and the resulting state."
(mval state))
(define-inlinable (current-state)
"Return the current state as a monadic value."
(lambda (state)
(values state state)))
(define-inlinable (set-current-state value)
"Set the current state to VALUE and return the previous state as a monadic
value."
(lambda (state)
(values state value)))
(define (state-pop)
"Pop a value from the current state and return it as a monadic value. The
state is assumed to be a list."
(lambda (state)
(match state
((head . tail)
(values head tail)))))
(define (state-push value)
"Push VALUE to the current state, which is assumed to be a list, and return
the previous state as a monadic value."
(lambda (state)
(values state (cons value state))))
;;; monads.scm end here
|